Health Communication Through News Media During the Early Stage of the COVID-19 Outbreak in China: Digital Topic Modeling Approach

中国 主题模型 潜在Dirichlet分配 2019年冠状病毒病(COVID-19) Python(编程语言) 社会化媒体 医学 疾病 计算机科学 爆发 万维网 历史 传染病(医学专业) 情报检索 病毒学 考古 病理 操作系统
作者
Qian Liu,Zequan Zheng,Jiabin Zheng,Qiuyi Chen,Guan Liu,Sihan Chen,Bojia Chu,Hongyu Zhu,Babatunde Akinwunmi,Jian Huang,Casper J. P. Zhang,Wai Kit Ming
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:22 (4): e19118-e19118 被引量:167
标识
DOI:10.2196/19118
摘要

Background In December 2019, a few coronavirus disease (COVID-19) cases were first reported in Wuhan, Hubei, China. Soon after, increasing numbers of cases were detected in other parts of China, eventually leading to a disease outbreak in China. As this dreadful disease spreads rapidly, the mass media has been active in community education on COVID-19 by delivering health information about this novel coronavirus, such as its pathogenesis, spread, prevention, and containment. Objective The aim of this study was to collect media reports on COVID-19 and investigate the patterns of media-directed health communications as well as the role of the media in this ongoing COVID-19 crisis in China. Methods We adopted the WiseSearch database to extract related news articles about the coronavirus from major press media between January 1, 2020, and February 20, 2020. We then sorted and analyzed the data using Python software and Python package Jieba. We sought a suitable topic number with evidence of the coherence number. We operated latent Dirichlet allocation topic modeling with a suitable topic number and generated corresponding keywords and topic names. We then divided these topics into different themes by plotting them into a 2D plane via multidimensional scaling. Results After removing duplications and irrelevant reports, our search identified 7791 relevant news reports. We listed the number of articles published per day. According to the coherence value, we chose 20 as the number of topics and generated the topics’ themes and keywords. These topics were categorized into nine main primary themes based on the topic visualization figure. The top three most popular themes were prevention and control procedures, medical treatment and research, and global or local social and economic influences, accounting for 32.57% (n=2538), 16.08% (n=1258), and 11.79% (n=919) of the collected reports, respectively. Conclusions Topic modeling of news articles can produce useful information about the significance of mass media for early health communication. Comparing the number of articles for each day and the outbreak development, we noted that mass media news reports in China lagged behind the development of COVID-19. The major themes accounted for around half the content and tended to focus on the larger society rather than on individuals. The COVID-19 crisis has become a worldwide issue, and society has become concerned about donations and support as well as mental health among others. We recommend that future work addresses the mass media’s actual impact on readers during the COVID-19 crisis through sentiment analysis of news data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助隐形的飞珍采纳,获得10
刚刚
小葵发布了新的文献求助10
2秒前
2秒前
皮半鬼发布了新的文献求助10
3秒前
噢噢噢噢完成签到 ,获得积分10
6秒前
qly发布了新的文献求助10
6秒前
qwwer发布了新的文献求助10
6秒前
香蕉梨愁完成签到,获得积分10
7秒前
cx330完成签到,获得积分10
7秒前
赘婿应助fjiang2003采纳,获得10
8秒前
8秒前
9秒前
9秒前
。。。发布了新的文献求助50
9秒前
Oh完成签到 ,获得积分10
9秒前
Lucas应助lllll采纳,获得30
9秒前
脑壳疼完成签到,获得积分10
11秒前
toto完成签到 ,获得积分10
11秒前
11秒前
11完成签到,获得积分10
11秒前
12秒前
wwwwww完成签到,获得积分10
12秒前
12秒前
华仔应助玲珑豆采纳,获得10
12秒前
我真的好漂亮关注了科研通微信公众号
13秒前
13秒前
缥缈纲完成签到,获得积分10
13秒前
PHW完成签到,获得积分10
14秒前
14秒前
无问西东发布了新的文献求助10
15秒前
xue发布了新的文献求助10
15秒前
大个应助qly采纳,获得10
15秒前
qwwer完成签到,获得积分10
16秒前
killler发布了新的文献求助10
17秒前
17秒前
18秒前
env完成签到,获得积分10
18秒前
加菲丰丰举报想去电影院求助涉嫌违规
18秒前
18秒前
鱿鱼完成签到,获得积分10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150776
求助须知:如何正确求助?哪些是违规求助? 3686885
关于积分的说明 11647634
捐赠科研通 3380110
什么是DOI,文献DOI怎么找? 1854929
邀请新用户注册赠送积分活动 916839
科研通“疑难数据库(出版商)”最低求助积分说明 830656