清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Model for Real-Time Prediction of Intradialytic Hypotension

医学 接收机工作特性 四分位间距 逻辑回归 人工神经网络 血液透析 置信区间 心脏病学 内科学 血压 麻醉 人工智能 计算机科学
作者
Hojun Lee,Donghwan Yun,Jayeon Yoo,KiYoon Yoo,Yong Chul Kim,Dong Ki Kim,Kook‐Hwan Oh,Kwon Wook Joo,Yon Su Kim,Nojun Kwak,Seung Seok Han
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:16 (3): 396-406 被引量:68
标识
DOI:10.2215/cjn.09280620
摘要

Intradialytic hypotension has high clinical significance. However, predicting it using conventional statistical models may be difficult because several factors have interactive and complex effects on the risk. Herein, we applied a deep learning model (recurrent neural network) to predict the risk of intradialytic hypotension using a timestamp-bearing dataset.We obtained 261,647 hemodialysis sessions with 1,600,531 independent timestamps (i.e., time-varying vital signs) and randomly divided them into training (70%), validation (5%), calibration (5%), and testing (20%) sets. Intradialytic hypotension was defined when nadir systolic BP was <90 mm Hg (termed intradialytic hypotension 1) or when a decrease in systolic BP ≥20 mm Hg and/or a decrease in mean arterial pressure ≥10 mm Hg on the basis of the initial BPs (termed intradialytic hypotension 2) or prediction time BPs (termed intradialytic hypotension 3) occurred within 1 hour. The area under the receiver operating characteristic curves, the area under the precision-recall curves, and F1 scores obtained using the recurrent neural network model were compared with those obtained using multilayer perceptron, Light Gradient Boosting Machine, and logistic regression models.The recurrent neural network model for predicting intradialytic hypotension 1 achieved an area under the receiver operating characteristic curve of 0.94 (95% confidence intervals, 0.94 to 0.94), which was higher than those obtained using the other models (P<0.001). The recurrent neural network model for predicting intradialytic hypotension 2 and intradialytic hypotension 3 achieved area under the receiver operating characteristic curves of 0.87 (interquartile range, 0.87-0.87) and 0.79 (interquartile range, 0.79-0.79), respectively, which were also higher than those obtained using the other models (P≤0.001). The area under the precision-recall curve and F1 score were higher using the recurrent neural network model than they were using the other models. The recurrent neural network models for intradialytic hypotension were highly calibrated.Our deep learning model can be used to predict the real-time risk of intradialytic hypotension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘染完成签到 ,获得积分10
7秒前
tianshanfeihe完成签到 ,获得积分10
8秒前
MISA完成签到 ,获得积分10
14秒前
orixero应助肥仔采纳,获得10
15秒前
YM完成签到,获得积分10
23秒前
25秒前
没U烦恼发布了新的文献求助10
30秒前
37秒前
benzene完成签到 ,获得积分10
40秒前
petrichor完成签到 ,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
隐形曼青应助科研通管家采纳,获得10
48秒前
一点完成签到 ,获得积分0
55秒前
59秒前
petrichor完成签到 ,获得积分10
1分钟前
肥仔发布了新的文献求助10
1分钟前
科研通AI2S应助没U烦恼采纳,获得10
1分钟前
肥仔完成签到,获得积分10
1分钟前
现代风格完成签到,获得积分10
1分钟前
李彪完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
sl完成签到 ,获得积分10
1分钟前
没U烦恼完成签到,获得积分10
1分钟前
xiaowuge完成签到 ,获得积分10
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
幽默滑板完成签到,获得积分10
2分钟前
北国雪未消完成签到 ,获得积分10
2分钟前
微笑的巧蕊完成签到 ,获得积分10
2分钟前
harden9159完成签到,获得积分10
2分钟前
古炮完成签到 ,获得积分10
3分钟前
小小鱼完成签到 ,获得积分10
3分钟前
蒲蒲完成签到 ,获得积分10
3分钟前
doreen发布了新的文献求助10
3分钟前
WenJun完成签到,获得积分10
3分钟前
wjx完成签到 ,获得积分10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
科目三应助doreen采纳,获得10
3分钟前
CJW完成签到 ,获得积分10
4分钟前
Boris完成签到 ,获得积分10
4分钟前
Sofia完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934613
求助须知:如何正确求助?哪些是违规求助? 3479986
关于积分的说明 11006150
捐赠科研通 3209870
什么是DOI,文献DOI怎么找? 1773838
邀请新用户注册赠送积分活动 860610
科研通“疑难数据库(出版商)”最低求助积分说明 797771