Deep Learning Model for Real-Time Prediction of Intradialytic Hypotension

医学 接收机工作特性 四分位间距 逻辑回归 人工神经网络 血液透析 置信区间 心脏病学 内科学 血压 麻醉 人工智能 计算机科学
作者
Hojun Lee,Donghwan Yun,Jayeon Yoo,KiYoon Yoo,Yong Chul Kim,Dong Ki Kim,Kook‐Hwan Oh,Kwon Wook Joo,Yon Su Kim,Nojun Kwak,Seung Seok Han
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:16 (3): 396-406 被引量:68
标识
DOI:10.2215/cjn.09280620
摘要

Intradialytic hypotension has high clinical significance. However, predicting it using conventional statistical models may be difficult because several factors have interactive and complex effects on the risk. Herein, we applied a deep learning model (recurrent neural network) to predict the risk of intradialytic hypotension using a timestamp-bearing dataset.We obtained 261,647 hemodialysis sessions with 1,600,531 independent timestamps (i.e., time-varying vital signs) and randomly divided them into training (70%), validation (5%), calibration (5%), and testing (20%) sets. Intradialytic hypotension was defined when nadir systolic BP was <90 mm Hg (termed intradialytic hypotension 1) or when a decrease in systolic BP ≥20 mm Hg and/or a decrease in mean arterial pressure ≥10 mm Hg on the basis of the initial BPs (termed intradialytic hypotension 2) or prediction time BPs (termed intradialytic hypotension 3) occurred within 1 hour. The area under the receiver operating characteristic curves, the area under the precision-recall curves, and F1 scores obtained using the recurrent neural network model were compared with those obtained using multilayer perceptron, Light Gradient Boosting Machine, and logistic regression models.The recurrent neural network model for predicting intradialytic hypotension 1 achieved an area under the receiver operating characteristic curve of 0.94 (95% confidence intervals, 0.94 to 0.94), which was higher than those obtained using the other models (P<0.001). The recurrent neural network model for predicting intradialytic hypotension 2 and intradialytic hypotension 3 achieved area under the receiver operating characteristic curves of 0.87 (interquartile range, 0.87-0.87) and 0.79 (interquartile range, 0.79-0.79), respectively, which were also higher than those obtained using the other models (P≤0.001). The area under the precision-recall curve and F1 score were higher using the recurrent neural network model than they were using the other models. The recurrent neural network models for intradialytic hypotension were highly calibrated.Our deep learning model can be used to predict the real-time risk of intradialytic hypotension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阁下宛歆完成签到,获得积分10
刚刚
刚刚
猫宁发布了新的文献求助10
1秒前
1秒前
彭于晏应助rr采纳,获得10
2秒前
孟伟完成签到,获得积分10
2秒前
tdtk发布了新的文献求助10
2秒前
夏之茗完成签到,获得积分10
2秒前
Nowind完成签到,获得积分10
2秒前
无奈的代珊完成签到 ,获得积分10
4秒前
4秒前
actor2006完成签到,获得积分10
4秒前
5秒前
路途发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
研友_VZG7GZ应助布布采纳,获得10
8秒前
makbaka发布了新的文献求助10
9秒前
畅快箴完成签到,获得积分10
9秒前
9秒前
10秒前
闪闪的乐蕊完成签到,获得积分10
10秒前
研友_VZG7GZ应助liuyue采纳,获得10
10秒前
10秒前
专注狗发布了新的文献求助10
10秒前
10秒前
逆天大脚完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
13秒前
xiaoGuo发布了新的文献求助30
13秒前
mizhou发布了新的文献求助10
15秒前
16秒前
科研通AI5应助开心谷秋采纳,获得10
16秒前
sy发布了新的文献求助10
16秒前
17秒前
17秒前
潮湿梦完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333227
关于积分的说明 10260438
捐赠科研通 3048867
什么是DOI,文献DOI怎么找? 1673295
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338