AI, Machine Learning, and International Criminal Investigations: The Lessons From Forensic Science

法医学 刑事调查 犯罪学 人工智能 计算机科学 心理学 医学 兽医学
作者
Karen McGregor Richmond
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:8
标识
DOI:10.2139/ssrn.3727899
摘要

The evolving field of machine learning and artificial intelligence is frequently presented as a positively disruptive branch of data science whose expansion allows for improvements in the speed, efficiency, and reliability of decision-making, and whose potential is impacting across diverse zones of human activity. A particular focus for development is within the criminal justice sector, and more particularly the field of international criminal justice, where AI is presented as a means to filter evidence from digital media, to perform visual analyses of satellite data, or to conduct textual analyses of judicial reporting datasets. Nonetheless, for all of its myriad potentials, the deployment of forensic machine learning and AI may also generate seemingly insoluble challenges. The critical discourse attendant upon the expansion of automated decision-making, and its social and legal consequences, resolves around two interpenetrating issues; specifically, algorithmic bias, and algorithmic opacity, the latter phenomena being the focus of this study. It is posited that the seemingly intractable evidential challenges associated with the introduction of opaque computational machine learning algorithms, though global in nature, are neither novel nor unfamiliar. Indeed, throughout the past decade and across a multitude of jurisdictions, criminal justice systems have been required to respond to the implementation of opaque forensic algorithms, particularly in relation to complex DNA mixture analysis. Therefore, with the objective of highlighting the potential avenues of challenge which may follow from the introduction of forensic AI, this study focusses on the prior experience of litigating, and regulating, probabilistic genotyping algorithms within the forensic science and criminal justice fields. Crucially, the study proposes that machine learning opacity constitutes an enhanced form of algorithmic opacity. Therefore, the challenges to rational fact-finding generated through the use of probabilistic genotyping software may be encountered anew, and exacerbated, through the introduction of forensic AI. In anticipating these challenges, the paper explores the distinct categories of opacity, and suggests collaborative solutions which may empower contemporary legal academics – and both legal and forensic practitioners - to set more rigorous and usable standards. The paper concludes by considering the ways in which academics, forensic scientists, and legal practitioners, particularly those working in the field of international criminal justice, might re-conceptualize these opaque technologies, opening a new field of critique and analysis. Using findings from case analyses, overarching regulatory guidance, and data drawn from empirical research interviews, this article addresses the validity, transparency, and interpretability problems, leading to a comprehensive assessment of the current challenges facing the introduction of forensic AI. It builds upon work undertaken at the Nuffield Council on Bioethics Horizon Scanning Workshop: The future of science in crime and security (5th July 2019, London).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzz发布了新的文献求助10
4秒前
薛wen晶完成签到 ,获得积分10
5秒前
5秒前
董小姐完成签到,获得积分10
5秒前
tao完成签到 ,获得积分10
6秒前
司徒不正完成签到 ,获得积分10
6秒前
科目三应助俏皮白云采纳,获得10
6秒前
Duha完成签到 ,获得积分10
6秒前
小花小宝和阿飞完成签到 ,获得积分10
7秒前
wrr完成签到,获得积分10
7秒前
领导范儿应助Yuhong采纳,获得10
8秒前
10秒前
热情路人发布了新的文献求助10
12秒前
qq发布了新的文献求助10
12秒前
华仔应助jackhlj采纳,获得10
12秒前
jason发布了新的文献求助10
15秒前
JamesPei应助zzzzzz采纳,获得10
15秒前
笨笨念文完成签到 ,获得积分10
16秒前
16秒前
yuancw完成签到 ,获得积分10
17秒前
whisper完成签到 ,获得积分10
17秒前
甜蜜的代容完成签到,获得积分10
18秒前
18秒前
19秒前
热情路人完成签到,获得积分10
19秒前
20秒前
淡然冬灵发布了新的文献求助50
20秒前
wxyes完成签到,获得积分20
21秒前
21秒前
24秒前
xzy998应助通通通采纳,获得10
24秒前
YY发布了新的文献求助10
25秒前
25秒前
小二郎应助wxyes采纳,获得10
27秒前
朴实初夏完成签到 ,获得积分10
27秒前
28秒前
28秒前
香蕉觅云应助Young采纳,获得10
30秒前
yliu完成签到,获得积分10
31秒前
思源应助淡然白安采纳,获得30
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304