Tissue-based metabolomics reveals metabolic biomarkers and potential therapeutic targets for esophageal squamous cell carcinoma

代谢组学 代谢物 化学 接收机工作特性 食管鳞状细胞癌 比例危险模型 癌症研究 内科学 生物化学 医学 色谱法
作者
Zhongjian Chen,Yun Gao,Xiancong Huang,Yao Yao,Keke Chen,Su Zeng,Weimin Mao
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:197: 113937-113937 被引量:22
标识
DOI:10.1016/j.jpba.2021.113937
摘要

Prognosis for esophageal squamous cell carcinoma (ESCC) is poor, so it is essential to develop a more complete understanding of the disease. The purpose of this study was to explore metabolic biomarkers and potential therapeutic targets for ESCC. An ultra-high-performance liquid chromatography coupled with high resolution mass (UPLC/MS)-based metabolomic analysis was performed in 141 ESCC cancerous tissue samples and 70 non-cancerous counterparts. The results showed that 41 differential metabolites were annotated in the training set, and 37 were validated in the test set. Single-metabolite-based receiver operating characteristic (ROC) curves as well as metabolite-based machine learning models, including Partial Least Squares (PLS), Support Vector Machine (SVM), and Random Forest (RF), were investigated for cancerous and non-cancerous tissue classification. Six most prevalent diagnostic metabolites—adenylsuccinic acid, UDP-GalNAc, maleylacetoacetic acid, hydroxyphenylacetylglycine, galactose, and kynurenine—showed testing predictive accuracies of 0.89, 0.95, 0.97, 0.89, 0.84, and 0.84, respectively. Moreover, the metabolite-based models (PLS, SVM, and RF) had testing predictive accuracies of 0.95, 0.95, and 1.00, respectively. Kaplan–Meier survival analysis and Cox proportional hazards regression analysis demonstrated that 2-hydroxymyristoylcarnitine (HR: 0.55, 95 % CI: 0.32 to 0.92), 3-hydroxyhexadecanoylcarnitine (HR: 0.49, 95 % CI: 0.29 to 0.83), and 2,3-Dinor-TXB1 (HR: 0.56, 95 % CI: 0.33 to 0.95) to be significantly associated with OS. Based on the observation of accumulation in amino acids, immunohistochemistry (IHC) staining revealed that the amino acid transporters SLC7A5/LAT1, SLC1A5/ASCT2, and SLC16A10/MCT10 were up-regulated in ESCC cancerous tissues when compared to non-cancerous equivalents. Consistently, the same panel of amino acids were downregulated in cells with SLC1A5 knockdown. Herein, it is concluded that this study not only identified several metabolites with diagnostic and/or prognostic value, but also provided accurate metabolite-based prediction models for ESCC tissue classification. Furthermore, the three up-regulated amino acid transporters were identified as potential therapeutic targets for ESCC, especially SLC1A5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助三四月采纳,获得10
1秒前
mzrrong发布了新的文献求助80
1秒前
2秒前
2秒前
3秒前
3秒前
知犯何逆发布了新的文献求助10
5秒前
Hello应助刻苦樱采纳,获得10
5秒前
6秒前
六七完成签到,获得积分20
7秒前
hugoh发布了新的文献求助10
7秒前
zxcvbnm发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
changping应助从容仙人采纳,获得10
9秒前
Lim1819发布了新的文献求助10
10秒前
NexusExplorer应助愤怒的铁身采纳,获得10
10秒前
fqs完成签到 ,获得积分10
10秒前
agoodred发布了新的文献求助10
11秒前
南瓜小笨111111完成签到 ,获得积分10
11秒前
香蕉觅云应助时生采纳,获得10
11秒前
12秒前
yukeshou完成签到 ,获得积分10
12秒前
13秒前
Zenia发布了新的文献求助10
13秒前
LaiZiwen发布了新的文献求助10
14秒前
wenwen发布了新的文献求助10
14秒前
bastien发布了新的文献求助10
15秒前
15秒前
17秒前
飞艇发布了新的文献求助10
18秒前
Ico发布了新的文献求助20
19秒前
19秒前
崔佳鑫完成签到 ,获得积分10
19秒前
21秒前
22秒前
Ava应助zhaop采纳,获得10
22秒前
归尘发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075983
求助须知:如何正确求助?哪些是违规求助? 4295640
关于积分的说明 13385047
捐赠科研通 4117410
什么是DOI,文献DOI怎么找? 2254869
邀请新用户注册赠送积分活动 1259467
关于科研通互助平台的介绍 1192218