Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Nature Portfolio]
卷期号:590 (7844): 89-96 被引量:762
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花开四海完成签到 ,获得积分0
1秒前
1秒前
田様应助搬石头采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
牛马完成签到,获得积分10
3秒前
allen关注了科研通微信公众号
4秒前
ma发布了新的文献求助10
4秒前
Sunny发布了新的文献求助10
4秒前
5秒前
10秒前
Yanglk发布了新的文献求助10
10秒前
10秒前
12秒前
科研通AI6应助彼岸采纳,获得10
13秒前
14秒前
飞快的尔芙完成签到,获得积分10
15秒前
15秒前
16秒前
18秒前
lbw发布了新的文献求助10
18秒前
19秒前
科研通AI6应助加油采纳,获得10
19秒前
Xinger发布了新的文献求助10
20秒前
欢喜火发布了新的文献求助10
20秒前
坦率的棉花糖完成签到,获得积分10
20秒前
淡然海安完成签到,获得积分10
23秒前
刻苦的雁荷完成签到,获得积分10
23秒前
清脆的道天完成签到,获得积分20
24秒前
赵小坤堃完成签到,获得积分10
24秒前
ddrose发布了新的文献求助10
24秒前
11完成签到,获得积分10
25秒前
紧张的惜梦完成签到,获得积分10
25秒前
酷波er应助Xu1909采纳,获得20
26秒前
27秒前
28秒前
30秒前
搬石头发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979386
求助须知:如何正确求助?哪些是违规求助? 4232080
关于积分的说明 13182198
捐赠科研通 4023012
什么是DOI,文献DOI怎么找? 2201141
邀请新用户注册赠送积分活动 1213588
关于科研通互助平台的介绍 1129781