Bayesian reaction optimization as a tool for chemical synthesis

贝叶斯优化 计算机科学 水准点(测量) 工程优化 机器学习 贝叶斯概率 最优化问题 人工智能 算法 大地测量学 地理
作者
Benjamin J. Shields,Jason M. Stevens,Jun Li,Marvin Parasram,Farhan Damani,Jesus I. Martinez Alvarado,Jacob M. Janey,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Nature [Nature Portfolio]
卷期号:590 (7844): 89-96 被引量:618
标识
DOI:10.1038/s41586-021-03213-y
摘要

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4,5,6,7,8,9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy完成签到,获得积分10
刚刚
大个应助winux007采纳,获得10
刚刚
xiao发布了新的文献求助10
1秒前
曾经小伙完成签到 ,获得积分10
1秒前
1秒前
斯文败类应助董H采纳,获得10
2秒前
2秒前
英姑应助jason367采纳,获得10
2秒前
解洙完成签到 ,获得积分10
2秒前
汉堡包应助平常的擎宇采纳,获得10
3秒前
脆脆鲨发布了新的文献求助10
4秒前
yinhe028发布了新的文献求助10
5秒前
Clara完成签到,获得积分10
5秒前
you完成签到,获得积分10
6秒前
6秒前
bkagyin应助iu采纳,获得10
6秒前
vividkingking完成签到 ,获得积分10
7秒前
26937635发布了新的文献求助10
7秒前
白菜发布了新的文献求助10
8秒前
fff完成签到,获得积分10
8秒前
8秒前
9秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
共享精神应助积土成山采纳,获得30
11秒前
11秒前
树袋熊发布了新的文献求助10
12秒前
科研小民工应助舒适路人采纳,获得80
12秒前
12秒前
老张头秃了完成签到,获得积分10
13秒前
winux007发布了新的文献求助10
14秒前
15秒前
15秒前
听蝉完成签到,获得积分10
17秒前
17秒前
董H发布了新的文献求助10
18秒前
英俊的铭应助winux007采纳,获得10
18秒前
奋斗的蜗牛完成签到,获得积分10
19秒前
香蕉觅云应助wmm采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785970
求助须知:如何正确求助?哪些是违规求助? 3331479
关于积分的说明 10251380
捐赠科研通 3046903
什么是DOI,文献DOI怎么找? 1672249
邀请新用户注册赠送积分活动 801168
科研通“疑难数据库(出版商)”最低求助积分说明 759994