钙钛矿(结构)
材料科学
光伏
氧化镍
图层(电子)
层压
薄膜
光电子学
光伏系统
氧化锡
氧化物
纳米技术
沉积(地质)
能量转换效率
化学工程
电气工程
冶金
工程类
古生物学
沉积物
生物
作者
Raphael Schmager,Julie Roger,Jonas A. Schwenzer,Fabian Schackmar,Tobias Abzieher,Mahdi Malekshahi Byranvand,Bahram Abdollahi Nejand,Matthias Worgull,Bryce S. Richards,Ulrich W. Paetzold
标识
DOI:10.1002/adfm.201907481
摘要
Abstract High‐efficiency perovskite‐based solar cells can be fabricated via either solution‐processing or vacuum‐based thin‐film deposition. However, both approaches limit the choice of materials and the accessible device architectures, due to solvent incompatibilities or possible layer damage by vacuum techniques. To overcome these limitations, the lamination of two independently processed half‐stacks of the perovskite solar cell is presented in this work. By laminating the two half‐stacks at an elevated temperature (≈90 °C) and pressure (≈50 MPa), the polycrystalline perovskite thin‐film recrystallizes and the perovskite/charge transport layer (CTL) interface forms an intimate electrical contact. The laminated perovskite solar cells with tin oxide and nickel oxide as CTLs exhibit power conversion efficiencies of up to 14.6%. Moreover, they demonstrate long‐term and high‐temperature stability at temperatures of up to 80 °C. This freedom of design is expected to access both novel device architectures and pairs of CTLs that remain usually inaccessible.
科研通智能强力驱动
Strongly Powered by AbleSci AI