Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance

光催化 罗丹明B 异质结 X射线光电子能谱 材料科学 水溶液 热液循环 离子液体 化学工程 激进的 光化学 化学 光电子学 催化作用 有机化学 工程类
作者
Huanhuan Liu,Yang Cai,Jiao Huang,Jiufu Chen,Junbo Zhong,Jianzhang Li
出处
期刊:Inorganic Chemistry Communications [Elsevier]
卷期号:113: 107806-107806 被引量:60
标识
DOI:10.1016/j.inoche.2020.107806
摘要

In this contribution, BiOI/BiOCl heterojunctions were successfully synthesized with the assistance of reactable ionic liquid (IL) 1-propyl-3-methylimidazolium iodide ([PrMIm]I) via a hydrothermal method. The crystal structures, morphologies, chemical compositions, optical properties and separation efficiency of photo-generated charge pairs of the as-prepared BiOI/BiOCl heterojunctions were characterized by various analytic methods. Surface photovoltage spectroscopy (SPS) and photoelectrochemical measurements reveal that the BiOI/BiOCl heterojunctions exhibit higher separation efficiency of photo-generated charge pairs than the reference BiOCl and BiOI. XPS results reveal that I element exists in the as-prepared samples with a chemical valence of −1, and when the mass ratio of [PrMIm]I/BiOCl is 8%, the sample holds the highest surface hydroxyl content. Photocatalytic performance of the as-fabricated photocatalysts was evaluated by abatement of rhodamine B (RhB) aqueous solution under simulated sunlight irradiation. BiOI/BiOCl heterojunctions exhibit enhanced photocatalytic performance; the 8% sample displays the highest photocatalytic activity. Trapping experiments certify that the superoxide radicals (O2−) is the predominant active free radicals in the photocatalytic degradation process of RhB over the BiOI/BiOCl heterojunctions. In light of experimental results, a possible Z-scheme photocatalytic degradation mechanism was discussed to elaborate the separation and migration of the photo-induced electron-hole pairs. This study provides a useful reference for ILs assisted fabrication of high efficiency photocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEI发布了新的文献求助200
刚刚
传奇3应助九黎采纳,获得10
刚刚
orixero应助iaw采纳,获得10
刚刚
任性初夏完成签到,获得积分10
刚刚
刚刚
刚刚
2秒前
2秒前
岩松完成签到 ,获得积分10
2秒前
2秒前
2秒前
99发布了新的文献求助10
3秒前
嘿嘿发布了新的文献求助10
3秒前
有魅力问梅完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
所所应助王359采纳,获得10
4秒前
LIOLLO_0110完成签到,获得积分10
5秒前
yy完成签到,获得积分10
5秒前
5秒前
月亮完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
刘大强完成签到,获得积分10
9秒前
9秒前
liyantong发布了新的文献求助10
9秒前
9秒前
9秒前
飘逸的乘风完成签到,获得积分10
9秒前
大秦帝国完成签到,获得积分10
9秒前
ontheway发布了新的文献求助10
10秒前
10秒前
红油曲奇发布了新的文献求助10
10秒前
10秒前
安安发布了新的文献求助10
10秒前
Orange应助yuanshl1985采纳,获得10
10秒前
HYJ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648136
求助须知:如何正确求助?哪些是违规求助? 4775011
关于积分的说明 15042974
捐赠科研通 4807191
什么是DOI,文献DOI怎么找? 2570599
邀请新用户注册赠送积分活动 1527359
关于科研通互助平台的介绍 1486404