计算机科学
鬼影成像
人工智能
降噪
计算机视觉
深度学习
像素
图像(数学)
奈奎斯特-香农抽样定理
图像去噪
采样(信号处理)
人工神经网络
基本事实
噪音(视频)
模式识别(心理学)
滤波器(信号处理)
作者
Heng Wu,Ruizhou Wang,Genping Zhao,Huapan Xiao,Jian Liang,Daodang Wang,Xiaobo Tian,Lianglun Cheng,Xianmin Zhang
标识
DOI:10.1016/j.optlaseng.2020.106183
摘要
We propose a deep learning denoising computational ghost imaging (CGI) method to obtain a clear object image with a sub-Nyquist sampling ratio. We develop an end-to-end deep neural network (DDANet) for CGI image reconstruction. DDANet uses a one-dimensional (1-D) bucket signals (BSs) and multiple tunable noise-level maps as input, and outputs a clear image. We train DDANet with simulated BSs and ground-truth pairs, and then retrieve the object image directly from an experimental obtained 1-D BSs. The effectiveness of the proposed method is experimentally investigated. The proposed method has practical applications in image denoising and enhancement of the CGI and single-pixel computational imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI