Explicit the urban waterlogging spatial variation and its driving factors: The stepwise cluster analysis model and hierarchical partitioning analysis approach

内涝(考古学) 环境科学 空间变异性 不透水面 驱动因素 城市化 统计 地理 数学 生态学 湿地 生物 考古 中国
作者
Qifei Zhang,Zhifeng Wu,Guanhua Guo,Hui Zhang,Paolo Tarolli
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:763: 143041-143041 被引量:65
标识
DOI:10.1016/j.scitotenv.2020.143041
摘要

Urban waterlogging is a hydrological cycle problem that seriously affects people's life and property. Characterizing waterlogging variation and explicit its driving factors are conducive to prevent the damage of such disasters. Conventional methods, because of the high spatial heterogeneity and the non-stationary complex mechanism of urban waterlogging, are not able to fully capture the urban waterlogging spatial variation and identify the waterlogging susceptibility areas. A more robust method is recommended to quantify the variation trend of urban waterlogging. Previous studies have simulated the waterlogging variation in relatively small areas. However, the relationship between variables is often ignored, which cannot comprehensively reveal the dominant drivers affecting urban waterlogging. Therefore, a novel approach is proposed that combined stepwise cluster analysis model (SCAM) and hierarchical partitioning analysis (HPA) within a general framework and verifies the applicability through logistic regression, artificial neural network, and support vector machine. According to the dominant driving factors, different simulation scenarios are established to analyze waterlogging density variation. Results found that the SCAM provides accurate and detailed simulated results both in urban centers where waterlogging frequently occurs and urban fringe with few waterlogging events, which shows an excellent performance with a high classification accuracy and generalization capability. HPA detected that the impervious surface abundance (28.07%), vegetation abundance (20.80%), and cumulate precipitation (16.25%) are the dominant drivers of waterlogging. This result suggests that priority should be given to controlling these three factors to mitigate the risk of waterlogging. It is interesting to note that under different urbanization and rainfall scenarios, the urban waterlogging susceptibility has a considerable variation. The watershed spatial location and watershed characteristics are relevant aspects to be considered in identifying and assessing waterlogging susceptibility, which provides original insights that urban waterlogging mitigation strategies should be developed according to different local conditions and future scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的小五完成签到,获得积分10
刚刚
2秒前
奋斗的大米完成签到,获得积分10
2秒前
FashionBoy应助自然立辉采纳,获得10
3秒前
会武功的阿吉完成签到,获得积分10
3秒前
giucher发布了新的文献求助10
4秒前
丘比特应助夏一苒采纳,获得10
4秒前
仓颉完成签到,获得积分10
4秒前
科研通AI2S应助奋斗的元瑶采纳,获得10
5秒前
Shandongdaxiu发布了新的文献求助10
6秒前
晁子枫完成签到 ,获得积分10
9秒前
10秒前
Y_Z完成签到,获得积分10
11秒前
11秒前
momo完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
莫愁一舞完成签到,获得积分10
15秒前
幸运儿发布了新的文献求助20
16秒前
16秒前
Y_Z发布了新的文献求助10
18秒前
现代的板栗完成签到 ,获得积分10
18秒前
共享精神应助雨下采纳,获得10
20秒前
23秒前
ZYYZYY完成签到,获得积分10
24秒前
紫陌完成签到,获得积分10
25秒前
64658完成签到,获得积分10
27秒前
平淡的文龙完成签到,获得积分10
27秒前
小盘子完成签到,获得积分10
29秒前
完美世界应助研友_8op5gL采纳,获得10
29秒前
斯文败类应助灵巧的导师采纳,获得10
29秒前
30秒前
和谐的芷天完成签到,获得积分10
30秒前
Lucas应助星痕采纳,获得10
30秒前
31秒前
kehe!完成签到 ,获得积分0
32秒前
CipherSage应助科研通管家采纳,获得10
33秒前
随遇而安应助科研通管家采纳,获得10
33秒前
大个应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776189
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10207096
捐赠科研通 3036920
什么是DOI,文献DOI怎么找? 1666478
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859