A Generic Quality Control Framework for Fetal Ultrasound Cardiac Four-Chamber Planes

人工智能 计算机科学 缩放 计算机视觉 残余物 模式识别(心理学) 图像质量 算法 图像(数学) 镜头(地质) 石油工程 工程类
作者
Jinbao Dong,Shengfeng Liu,Yimei Liao,Huaxuan Wen,Baiying Lei,Shengli Li,Tianfu Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 931-942 被引量:65
标识
DOI:10.1109/jbhi.2019.2948316
摘要

Quality control/assessment of ultrasound (US) images is an essential step in clinical diagnosis. This process is usually done manually, suffering from some drawbacks, such as dependence on operator's experience and extensive labors, as well as high inter- and intra-observer variation. Automatic quality assessment of US images is therefore highly desirable. Fetal US cardiac four-chamber plane (CFP) is one of the most commonly used cardiac views, which was used in the diagnosis of heart anomalies in the early 1980s. In this paper, we propose a generic deep learning framework for automatic quality control of fetal US CFPs. The proposed framework consists of three networks: (1) a basic CNN (B-CNN), roughly classifying four-chamber views from the raw data; (2) a deeper CNN (D-CNN), determining the gain and zoom of the target images in a multi-task learning manner; and (3) the aggregated residual visual block net (ARVBNet), detecting the key anatomical structures on a plane. Based on the output of the three networks, overall quantitative score of each CFP is obtained, so as to achieve fully automatic quality control. Experiments on a fetal US dataset demonstrated our proposed method achieved a highest mean average precision (mAP) of 93.52% at a fast speed of 101 frames per second (FPS). In order to demonstrate the adaptability and generalization capacity, the proposed detection network (i.e., ARVBNet) has also been validated on the PASCAL VOC dataset, obtaining a highest mAP of 81.2% when input size is approximately 300 × 300.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
2秒前
juciy完成签到 ,获得积分10
3秒前
香蕉觅云应助研友_LkD09n采纳,获得10
4秒前
jlwang发布了新的文献求助10
5秒前
可可完成签到,获得积分10
5秒前
小蘑菇应助浅陌采纳,获得10
6秒前
student完成签到 ,获得积分10
7秒前
8秒前
fragile完成签到,获得积分10
8秒前
美好斓发布了新的文献求助10
11秒前
Slemon完成签到,获得积分10
14秒前
黄小二完成签到 ,获得积分10
15秒前
15秒前
小顾发布了新的文献求助20
15秒前
16秒前
Ryan完成签到 ,获得积分10
18秒前
谭小仙儿完成签到 ,获得积分10
20秒前
浅陌发布了新的文献求助10
21秒前
Liberal-5完成签到 ,获得积分10
26秒前
Owen应助材料小王子采纳,获得10
26秒前
星空完成签到 ,获得积分10
27秒前
王线性完成签到,获得积分10
28秒前
易欣乐慰完成签到,获得积分0
29秒前
Ava应助小顾采纳,获得10
30秒前
30秒前
大个应助武狼帝采纳,获得10
34秒前
值雨完成签到,获得积分10
35秒前
等待的幼晴完成签到,获得积分10
35秒前
儒雅八宝粥完成签到 ,获得积分10
35秒前
研友_LkD09n发布了新的文献求助10
36秒前
小张完成签到 ,获得积分10
36秒前
奋斗的妙海完成签到 ,获得积分0
41秒前
蓝天碧海小西服完成签到,获得积分0
42秒前
43秒前
故酒应助材料小王子采纳,获得10
43秒前
自信放光芒~完成签到 ,获得积分10
44秒前
46秒前
abjz完成签到,获得积分10
47秒前
安详凡完成签到 ,获得积分10
50秒前
刘雅彪完成签到 ,获得积分10
50秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726