Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics

多西紫杉醇 医学 无容量 吉非替尼 肺癌 无线电技术 肿瘤科 内科学 置信区间 癌症 实体瘤疗效评价标准 临床试验 放射科 表皮生长因子受体 临床研究阶段 免疫疗法
作者
Laurent Dercle,Matthew P. Fronheiser,Liwu Lin,Shuyan Du,Wendy Hayes,David Leung,Amit Roy,Julia Wilkerson,Pengcheng Guo,Antonio Tito Fojo,Lawrence H. Schwartz,Binsheng Zhao
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:26 (9): 2151-2162 被引量:92
标识
DOI:10.1158/1078-0432.ccr-19-2942
摘要

Abstract Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non–small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), CheckMate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55–1.00); docetaxel, 0.67 (0.37–0.96); and gefitinib, 0.82 (0.53–0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈小马发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得200
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大个应助Truman采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
昏睡的蟠桃应助科研通管家采纳,获得200
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得20
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
希望天下0贩的0应助代容采纳,获得20
2秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助何丑丑采纳,获得10
3秒前
田様应助贾舒涵采纳,获得30
3秒前
4秒前
完美世界应助LLHH采纳,获得10
4秒前
Sunny关注了科研通微信公众号
4秒前
5秒前
Xiaoxiao应助小比熊采纳,获得10
5秒前
呆呆完成签到,获得积分10
6秒前
...发布了新的文献求助20
6秒前
7秒前
小二郎应助孙畅采纳,获得10
7秒前
7秒前
学医救不了中国人完成签到,获得积分10
7秒前
钇点点完成签到,获得积分10
7秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051