Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic

分割 人工智能 动脉瘤 计算机科学 分辨率(逻辑) 图像分割 放射科 计算机视觉 医学
作者
Tatsat R. Patel,Nikhil Paliwal,Prakhar Jaiswal,Muhammad Waqas,Maxim Mokin,Adnan H. Siddiqui,Hui Meng,Rahul Rai,Vincent M. Tutino
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 卷期号:: 101-101 被引量:28
标识
DOI:10.1117/12.2549761
摘要

Background: Vascular segmentation of cerebral vascular imaging is tedious and manual, hindering translation of imagebased computational tools for neurovascular disease (such as intracranial aneurysm) management. Current cerebrovascular segmentation techniques use classic model-based algorithms, but such algorithms are incapable of distinguishing vasculature from artifacts. Deep Learning, specifically the widely accepted U-Net architecture, could be an effective alternative to conventional approaches for cerebrovascular segmentation, but has been shown to perform poorly in segmentation of smaller yet critical vessels. Methods: In this study, we present a methodology using a specialized convolutional neural network (CNN) architecture— DeepMedic—which uses multi-resolution inputs to enhance the field of view of the architecture, thereby enhancing the accuracy of segmentation of smaller vessels. To show the capability of this architecture, we collected and segmented a total of 100 digital subtraction angiography (DSA) images of cerebral vessels for training, internal validation, and testing (n=80, n=10, and n=10, respectively). Results: The DeepMedic architecture yielded high performance with a Connectivity-Area-Length (CAL) of 0.84±0.07 and a dice similarity coefficient (DSC) of 0.94±0.02 in the independent testing cohort. This was better than U-Net optimized for the patch-size and %-overlap in predictions, which performed with a CAL of 0.79±0.06 and a DSC of 0.92±0.02. Notably, our work demonstrated that DeepMedic (CAL: 0.45±0.12) outperformed U-Net (CAL: 0.59±0.11) for segmentation of smaller vessels. Conclusions: Our work showed DeepMedic performs better than the current state-of-the-art method for cerebrovascular segmentation. We hope this study begins to bring a high fidelity deep-learning based approach closer to clinical translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曦耀发布了新的文献求助30
刚刚
深情安青应助予垚采纳,获得10
刚刚
fairy完成签到,获得积分10
刚刚
王东完成签到,获得积分10
2秒前
香蕉觅云应助手可摘星辰采纳,获得10
2秒前
皓月星辰发布了新的文献求助10
3秒前
Orange应助结实觅海采纳,获得10
3秒前
4秒前
4秒前
王多肉发布了新的文献求助10
4秒前
TB123发布了新的文献求助10
4秒前
开小白发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
6秒前
852应助王海海采纳,获得10
8秒前
BowieHuang应助非一般采纳,获得10
8秒前
叶先生完成签到 ,获得积分10
8秒前
9秒前
金金发布了新的文献求助20
10秒前
小付发布了新的文献求助10
10秒前
小盆呐发布了新的文献求助10
11秒前
Yili发布了新的文献求助10
11秒前
脑洞疼应助TB123采纳,获得10
12秒前
12秒前
小鲨宇发布了新的文献求助10
13秒前
HGQ发布了新的文献求助30
13秒前
13秒前
ljx发布了新的文献求助10
13秒前
Cyan完成签到,获得积分10
15秒前
YY88687321完成签到 ,获得积分10
16秒前
你好完成签到,获得积分10
16秒前
谢大喵发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
蛋烘糕发布了新的文献求助10
17秒前
阿洁发布了新的文献求助10
18秒前
18秒前
20秒前
开小白完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527675
求助须知:如何正确求助?哪些是违规求助? 4617417
关于积分的说明 14558117
捐赠科研通 4556016
什么是DOI,文献DOI怎么找? 2496666
邀请新用户注册赠送积分活动 1477048
关于科研通互助平台的介绍 1448374