Transfer learning-based highway crash risk evaluation considering manifold characteristics of traffic flow

撞车 流量(计算机网络) 毒物控制 运输工程 可转让性 计算机科学 工程类 统计 数据挖掘
作者
Liu Qingchao,Chun Li,Haobin Jiang,Shiqi Nie,Long Chen
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:168: 106598-106598
标识
DOI:10.1016/j.aap.2022.106598
摘要

• LightGBM was used to analyze the importance of traffic flow at different times and locations. • A novel crash risk probability calculation method based on manifold distance was developed. • The manifold distance considered more features of traffic flow data when selecting neighbors. • TransferBoost was employed to build a crash risk model. The main objective of this study is to evaluate highway crash risk and improve the spatial and temporal transferability of crash risk models. The predictive performance is affected by the difficulty of existing models to quantify crash risk from historical traffic flow data at different locations and times and may not fully capture the complex nonlinear relationships between high-dimensional factors in traffic flow states. Oregon US26W freeway data from 2016 and 2017 and I5N freeway data from 2017 were used. Raw detector data collected from two consecutive detector stations upstream-downstream detector stations were converted into 30 traffic variables. The averages, standard deviations, and coefficients of variation were obtained by aggregating traffic values using each lane. Candidate variables for traffic flow were extracted, and the importance of each variable was calculated using LightGBM, which reveals that variable differences between lanes contributed more. The manifold distance was then applied to quantify the crash risk and classify traffic crashes or not. When the manifold distance is 0.4, it could effectively distinguish traffic crashes. TransferBoost was further employed to build a crash risk model. Modeling using 2016 and 2017 data from the US26W freeway revealed a significant decrease in AUC and a gradual decrease in the model’s sensitivity. However, the crash risk prediction performance of TransferBoost improved by 5.2% when modeling using 2017 data from US26W and I5N freeways. The results show that the model developed for one time period cannot be directly used to predict crash risk for another period on the same freeway. However, the model developed for one highway cannot be directly used to predict the crash risk of another highway either, maintaining some transferability at low false alarm rates. TransferBoost provides a fresh perspective on the transferability of the model. The findings of this study could facilitate more accurate proactive safety management and improvement countermeasure development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助俭朴的猫咪采纳,获得10
2秒前
3秒前
斯文败类应助lcw采纳,获得10
3秒前
kokodayo1919发布了新的文献求助10
4秒前
5秒前
zzz完成签到 ,获得积分10
6秒前
6秒前
yiyao完成签到,获得积分10
6秒前
6秒前
heal完成签到,获得积分10
7秒前
9秒前
Guoqiang发布了新的文献求助10
10秒前
超锅发布了新的文献求助10
10秒前
陈可欣发布了新的文献求助10
11秒前
封雪婷完成签到 ,获得积分10
13秒前
Pt-SACs发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
17秒前
17秒前
完美世界应助heal采纳,获得10
17秒前
月啦啦发布了新的文献求助10
20秒前
科研通AI5应助谨慎的雁桃采纳,获得30
21秒前
qqq发布了新的文献求助10
21秒前
Orange应助陈可欣采纳,获得10
21秒前
SunnyZjw发布了新的文献求助10
22秒前
daidai发布了新的文献求助10
22秒前
23秒前
上善若水完成签到 ,获得积分10
24秒前
深情安青应助土拨鼠采纳,获得10
24秒前
Jasper应助CHB只争朝夕采纳,获得10
25秒前
Abelsci完成签到,获得积分0
25秒前
Wangchenghan发布了新的文献求助10
26秒前
27秒前
烟花应助拉赫马尼洛夫采纳,获得30
31秒前
月啦啦完成签到,获得积分10
33秒前
科研通AI5应助阿渺采纳,获得10
33秒前
33秒前
lxlcx完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669