已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study

医学 神经组阅片室 支持向量机 磁共振成像 人工智能 机器学习 无线电技术 队列 放射科 核医学 计算机科学 病理 神经学 精神科
作者
Zhiying He,Yitao Mao,Shanhong Lu,Lei Tan,Juxiong Xiao,Pingqing Tan,Hailin Zhang,Li Guo,Helei Yan,Jiaqi Tan,Donghai Huang,Yuanzheng Qiu,Xin Zhang,Xingwei Wang,Yong Liu
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (12): 8099-8110 被引量:31
标识
DOI:10.1007/s00330-022-08943-9
摘要

ObjectivesTo evaluate the effectiveness of machine learning models based on morphological magnetic resonance imaging (MRI) radiomics in the classification of parotid tumors.MethodsIn total, 298 patients with parotid tumors were randomly assigned to a training and test set at a ratio of 7:3. Radiomics features were extracted from the morphological MRI images and screened using the Select K Best and LASSO algorithm. Three-step machine learning models with XGBoost, SVM, and DT algorithms were developed to classify the parotid neoplasms into four subtypes. The ROC curve was used to measure the performance in each step. Diagnostic confusion matrices of these models were calculated for the test cohort and compared with those of the radiologists.ResultsSix, twelve, and eight optimal features were selected in each step of the three-step process, respectively. XGBoost produced the highest area under the curve (AUC) for all three steps in the training cohort (0.857, 0.882, and 0.908, respectively), and for the first step in the test cohort (0.826), but produced slightly lower AUCs than SVM in the latter two steps in the test cohort (0.817 vs. 0.833, and 0.789 vs. 0.821, respectively). The total accuracies of XGBoost and SVM in the confusion matrices (70.8% and 59.6%) outperformed those of DT and the radiologist (46.1% and 49.2%).ConclusionThis study demonstrated that machine learning models based on morphological MRI radiomics might be an assistive tool for parotid tumor classification, especially for preliminary screening in absence of more advanced scanning sequences, such as DWI.Key Points • Machine learning algorithms combined with morphological MRI radiomics could be useful in the preliminary classification of parotid tumors. • XGBoost algorithm performed better than SVM and DT in subtype differentiation of parotid tumors, while DT seemed to have a poor validation performance. • Using morphological MRI only, the XGBoost and SVM algorithms outperformed radiologists in the four-type classification task for parotid tumors, thus making these models a useful assistant diagnostic tool in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙严青发布了新的文献求助10
3秒前
cogntivedisorder完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
桐桐应助cogntivedisorder采纳,获得10
8秒前
8秒前
嘟嘟嘟完成签到,获得积分10
9秒前
丘比特应助余生请指教采纳,获得10
12秒前
哈哈完成签到,获得积分10
12秒前
混子玉发布了新的文献求助10
13秒前
端庄千青发布了新的文献求助10
13秒前
孙严青完成签到,获得积分10
14秒前
Wenjian7761完成签到,获得积分10
15秒前
16秒前
17秒前
sunlibiye发布了新的文献求助10
21秒前
lyz完成签到,获得积分10
22秒前
绮罗完成签到 ,获得积分10
33秒前
田様应助陈博文采纳,获得10
36秒前
混子玉发布了新的文献求助10
40秒前
Criminology34应助科研通管家采纳,获得10
41秒前
xzy998应助科研通管家采纳,获得30
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
41秒前
Biyeeee完成签到 ,获得积分10
41秒前
42秒前
科研通AI6应助light派采纳,获得30
46秒前
栗子完成签到,获得积分10
47秒前
48秒前
科研通AI2S应助xwc采纳,获得10
53秒前
54秒前
honey发布了新的文献求助10
54秒前
张鱼小丸子完成签到,获得积分10
55秒前
ioii发布了新的文献求助10
57秒前
Anna完成签到 ,获得积分10
57秒前
云1077完成签到,获得积分10
58秒前
DrN完成签到,获得积分10
58秒前
yoyo发布了新的文献求助10
59秒前
旨酒欣欣应助默默的凛采纳,获得10
59秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644383
求助须知:如何正确求助?哪些是违规求助? 4763842
关于积分的说明 15024878
捐赠科研通 4802778
什么是DOI,文献DOI怎么找? 2567562
邀请新用户注册赠送积分活动 1525318
关于科研通互助平台的介绍 1484781