Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study

医学 神经组阅片室 支持向量机 磁共振成像 人工智能 机器学习 无线电技术 队列 放射科 核医学 计算机科学 病理 神经学 精神科
作者
Zhiying He,Yitao Mao,Shanhong Lu,Lei Tan,Juxiong Xiao,Pingqing Tan,Hailin Zhang,Li Guo,Helei Yan,Jiaqi Tan,Donghai Huang,Yuanzheng Qiu,Xin Zhang,Xingwei Wang,Yong Liu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (12): 8099-8110 被引量:23
标识
DOI:10.1007/s00330-022-08943-9
摘要

ObjectivesTo evaluate the effectiveness of machine learning models based on morphological magnetic resonance imaging (MRI) radiomics in the classification of parotid tumors.MethodsIn total, 298 patients with parotid tumors were randomly assigned to a training and test set at a ratio of 7:3. Radiomics features were extracted from the morphological MRI images and screened using the Select K Best and LASSO algorithm. Three-step machine learning models with XGBoost, SVM, and DT algorithms were developed to classify the parotid neoplasms into four subtypes. The ROC curve was used to measure the performance in each step. Diagnostic confusion matrices of these models were calculated for the test cohort and compared with those of the radiologists.ResultsSix, twelve, and eight optimal features were selected in each step of the three-step process, respectively. XGBoost produced the highest area under the curve (AUC) for all three steps in the training cohort (0.857, 0.882, and 0.908, respectively), and for the first step in the test cohort (0.826), but produced slightly lower AUCs than SVM in the latter two steps in the test cohort (0.817 vs. 0.833, and 0.789 vs. 0.821, respectively). The total accuracies of XGBoost and SVM in the confusion matrices (70.8% and 59.6%) outperformed those of DT and the radiologist (46.1% and 49.2%).ConclusionThis study demonstrated that machine learning models based on morphological MRI radiomics might be an assistive tool for parotid tumor classification, especially for preliminary screening in absence of more advanced scanning sequences, such as DWI.Key Points • Machine learning algorithms combined with morphological MRI radiomics could be useful in the preliminary classification of parotid tumors. • XGBoost algorithm performed better than SVM and DT in subtype differentiation of parotid tumors, while DT seemed to have a poor validation performance. • Using morphological MRI only, the XGBoost and SVM algorithms outperformed radiologists in the four-type classification task for parotid tumors, thus making these models a useful assistant diagnostic tool in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
顾矜应助冯123采纳,获得10
1秒前
谨慎紫霜发布了新的文献求助10
1秒前
平常的毛豆应助MeilingLi采纳,获得30
2秒前
善学以致用应助坦率道之采纳,获得10
2秒前
脑洞疼应助cherish采纳,获得10
2秒前
英格兰胖头鱼完成签到 ,获得积分10
2秒前
4秒前
4秒前
123完成签到,获得积分10
4秒前
zhaoxiaonuan发布了新的文献求助10
4秒前
6秒前
科研通AI2S应助感动世倌采纳,获得10
6秒前
天天快乐应助David采纳,获得10
6秒前
灿烂发布了新的文献求助30
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小巧凝丹完成签到,获得积分10
8秒前
AA发布了新的文献求助10
9秒前
zhouenen发布了新的文献求助30
9秒前
水怪啊完成签到,获得积分10
9秒前
10秒前
11秒前
Phoneix完成签到,获得积分10
11秒前
11秒前
桐桐应助高大威猛先生采纳,获得10
11秒前
Gj完成签到,获得积分10
12秒前
陈炫彬完成签到 ,获得积分10
12秒前
11完成签到,获得积分20
13秒前
Yiyi完成签到,获得积分20
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767