亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study

医学 神经组阅片室 支持向量机 磁共振成像 人工智能 机器学习 无线电技术 队列 放射科 核医学 计算机科学 病理 神经学 精神科
作者
Zhiying He,Yitao Mao,Shanhong Lu,Lei Tan,Juxiong Xiao,Pingqing Tan,Hailin Zhang,Li Guo,Helei Yan,Jiaqi Tan,Donghai Huang,Yuanzheng Qiu,Xin Zhang,Xingwei Wang,Yong Liu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (12): 8099-8110 被引量:23
标识
DOI:10.1007/s00330-022-08943-9
摘要

ObjectivesTo evaluate the effectiveness of machine learning models based on morphological magnetic resonance imaging (MRI) radiomics in the classification of parotid tumors.MethodsIn total, 298 patients with parotid tumors were randomly assigned to a training and test set at a ratio of 7:3. Radiomics features were extracted from the morphological MRI images and screened using the Select K Best and LASSO algorithm. Three-step machine learning models with XGBoost, SVM, and DT algorithms were developed to classify the parotid neoplasms into four subtypes. The ROC curve was used to measure the performance in each step. Diagnostic confusion matrices of these models were calculated for the test cohort and compared with those of the radiologists.ResultsSix, twelve, and eight optimal features were selected in each step of the three-step process, respectively. XGBoost produced the highest area under the curve (AUC) for all three steps in the training cohort (0.857, 0.882, and 0.908, respectively), and for the first step in the test cohort (0.826), but produced slightly lower AUCs than SVM in the latter two steps in the test cohort (0.817 vs. 0.833, and 0.789 vs. 0.821, respectively). The total accuracies of XGBoost and SVM in the confusion matrices (70.8% and 59.6%) outperformed those of DT and the radiologist (46.1% and 49.2%).ConclusionThis study demonstrated that machine learning models based on morphological MRI radiomics might be an assistive tool for parotid tumor classification, especially for preliminary screening in absence of more advanced scanning sequences, such as DWI.Key Points • Machine learning algorithms combined with morphological MRI radiomics could be useful in the preliminary classification of parotid tumors. • XGBoost algorithm performed better than SVM and DT in subtype differentiation of parotid tumors, while DT seemed to have a poor validation performance. • Using morphological MRI only, the XGBoost and SVM algorithms outperformed radiologists in the four-type classification task for parotid tumors, thus making these models a useful assistant diagnostic tool in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WerWu完成签到,获得积分10
刚刚
qty完成签到 ,获得积分10
51秒前
54秒前
阔达棉花糖完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
eiueei完成签到,获得积分10
1分钟前
2分钟前
舒心青旋完成签到,获得积分10
2分钟前
3分钟前
3分钟前
流雲发布了新的文献求助10
3分钟前
3分钟前
3分钟前
舒心青旋发布了新的文献求助10
3分钟前
LMF完成签到 ,获得积分10
3分钟前
4分钟前
小么小发布了新的文献求助10
4分钟前
4分钟前
wanci应助体贴花卷采纳,获得10
4分钟前
5分钟前
奋斗的萝发布了新的文献求助10
5分钟前
John完成签到,获得积分10
5分钟前
6分钟前
Glitter完成签到 ,获得积分10
6分钟前
6分钟前
奋斗的萝发布了新的文献求助10
6分钟前
Hello应助爱听歌的小霸王采纳,获得20
6分钟前
6分钟前
Billy应助eva采纳,获得30
7分钟前
7分钟前
7分钟前
奋斗的萝发布了新的文献求助10
7分钟前
PHD满完成签到 ,获得积分20
7分钟前
eva完成签到,获得积分20
7分钟前
cy0824完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
云下发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392510
求助须知:如何正确求助?哪些是违规求助? 3882730
关于积分的说明 12090227
捐赠科研通 3526735
什么是DOI,文献DOI怎么找? 1935339
邀请新用户注册赠送积分活动 976388
科研通“疑难数据库(出版商)”最低求助积分说明 874081