Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food

化学计量学 色谱法 化学 表面增强拉曼光谱 毒品检测 吡罗昔康 薄层色谱法 萘普生 检出限 线性判别分析 拉曼光谱 人工智能 物理 光学 医学 替代医学 病理 拉曼散射 计算机科学
作者
Fangwei Yang,Cheng Wang,Hang Yu,Yahui Guo,Yuliang Cheng,Weirong Yao,Yunfei Xie
出处
期刊:Food bioscience [Elsevier]
卷期号:49: 101842-101842 被引量:18
标识
DOI:10.1016/j.fbio.2022.101842
摘要

The risk of the illegal addition of anti-inflammatory and analgesic chemical drugs in anti-rheumatic health foods should not be ignored. Market supervision and rapid on-site detection technology need to be strengthened. Thin-layer chromatography-surface-enhanced Raman spectroscopy (TLC-SERS), which has the advantages of simple operation, fast separation, and qualitative and quantitative detection, was used in this study. And these eleven chemical drugs (acetaminophen, acetylsalicylic acid, aminophenazone, dexamethasone, diclofenac sodium, hydrocortisone, indometacin, naproxen, phenylbutazone, piroxicam, prednisone 21-acetate) that may be added to anti-rheumatic health foods have been simultaneously identified by TLC-SERS combined with chemometrics method. The characteristic signals of the separated drug spots were collected by SERS, which were optimized by the gold colloidal nanoparticles' volume and integration time. Then SERS was subjected to principal component analysis (PCA) to reduce dimensionality and combined with the pattern recognition methods in chemometrics, such as PCA-Linear Discriminant Analysis (LDA), PCA-K Nearest Neighbor and PCA-Support Vector Machine, and eleven drug components were judged and identified. Moreover, the predictive performances of different models were also analyzed and compared. The results showed that the TLC plate and four organic solvents of petroleum ether, chloroform, ethyl acetate and acetic acid were selected as the developing agent. The dropping amount of gold colloidal nanoparticles and the integration time were set and optimized. The limit of detection of the simultaneous detection method of SERS was 10–100 mg/L. Furthermore, SERS was preprocessed by Gap-Segment 2nd Derivative, and then the PCA-LDA model was established, and the model's prediction accuracy can reach 100%. The method is simple, rapid, sensitive and accurate, and has low experimental instruments and equipment requirements. It is suitable for the on-site simultaneous detection of various anti-inflammatory and analgesic chemical drugs in health foods. It can also provide guarantee and support for the establishment of appropriate rapid detection methods and the development of supervision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率万宝路完成签到,获得积分10
刚刚
2秒前
破绽发布了新的文献求助10
4秒前
5秒前
QQ完成签到,获得积分10
5秒前
wei_7发布了新的文献求助10
5秒前
6秒前
西因发布了新的文献求助10
8秒前
哈哈发布了新的文献求助20
9秒前
擎天之柱完成签到 ,获得积分10
9秒前
10秒前
11秒前
kk发布了新的文献求助10
11秒前
我学不进去了完成签到,获得积分10
14秒前
14秒前
新念发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
优雅的千凝完成签到,获得积分10
15秒前
不会摸鱼的研究生不是好研究生完成签到,获得积分10
15秒前
默默戎完成签到,获得积分10
15秒前
慕青应助文静的夜梅采纳,获得10
16秒前
yliu完成签到,获得积分10
16秒前
忐忑的书桃完成签到 ,获得积分10
16秒前
17秒前
王金禹完成签到,获得积分10
20秒前
20秒前
23秒前
宋祥瑞完成签到,获得积分20
23秒前
24秒前
mmm发布了新的文献求助10
24秒前
卷毛发布了新的文献求助30
28秒前
缓慢海亦完成签到,获得积分10
29秒前
新念完成签到,获得积分10
31秒前
乾乾完成签到,获得积分10
31秒前
微风完成签到 ,获得积分10
32秒前
完美世界应助张凯茜采纳,获得10
33秒前
enochc完成签到 ,获得积分10
34秒前
34秒前
时舒完成签到 ,获得积分10
38秒前
清脆冬日完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600669
求助须知:如何正确求助?哪些是违规求助? 4686274
关于积分的说明 14842599
捐赠科研通 4677373
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505853
关于科研通互助平台的介绍 1471229