Broyden–Fletcher–Goldfarb–Shanno算法
非线性共轭梯度法
数学
共轭梯度法
单调多边形
共轭梯度法的推导
非线性系统
共轭残差法
应用数学
趋同(经济学)
梯度下降
双共轭梯度法
梯度法
类型(生物学)
行搜索
数学分析
数学优化
计算机科学
几何学
物理
机器学习
计算机安全
生物
异步通信
经济增长
计算机网络
经济
半径
生态学
量子力学
人工神经网络
作者
Auwal Bala Abubakar,Hassan Mohammad,Poom Kumam,Sadiya Ali Rano,Abdulkarim Hassan Ibrahim,Aliyu Ibrahim Kiri
摘要
We present a new approach for constructing a spectral conjugate gradient‐type method for solving nonlinear equations. The proposed method uses an approximate optimal step size together with the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula to generate a new choice of the spectral conjugate gradient‐type direction that satisfies the sufficient descent condition without line search requirement. The global convergence of the method is achieved under some mild assumptions. Numerical experiments on both nonlinear monotone equations and signal reconstruction problems reveal the efficiency of the new approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI