An ensemble method for short-term wind power prediction considering error correction strategy

风力发电 计算机科学 水准点(测量) 人工智能 工程类 电气工程 大地测量学 地理
作者
Lin Ye,Binhua Dai,Zhuo Li,Ming Pei,Yongning Zhao,Peng Lu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:322: 119475-119475 被引量:48
标识
DOI:10.1016/j.apenergy.2022.119475
摘要

• A wind power prediction method based on ensemble learning and hyper-parameters optimization is proposed. • A wind power sequence segmentation method based on the Swing Window is proposed. • The relationships mapping model between error sequence and NWP sequences are built. • A daily rolling error correction strategy is proposed to correct wind power prediction results. With a high proportion of renewable energy injected into the power grid, the accurate wind power prediction of wind farms is key to improving power quality and ensuring the stable operation of the power grid. In this paper, an ensemble learning prediction model considering the rolling error correction strategy used for short-term wind power prediction is proposed. Firstly, the ensemble learning prediction model integrating multiple Gradient Boosting Trees (GBDTs) based on Bayesian optimization is established, and the characteristics of prediction errors are analyzed. To further improve the prediction accuracy, a daily rolling error correction strategy based on the Swing Window segmentation method, Spearman correlation coefficient and Quantile Regression is established to obtain the optimal compensation amount. Finally, the corrected short-term wind power prediction results are obtained. The two-year dataset collected from a regional wind farm in China is used as the benchmark test. Different prediction models and error correction strategies are compared, and the effectiveness of the proposed method is comprehensively evaluated. The results from different seasons show that the proposed prediction method has good stability, and the proposed error correction strategy has good generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vermouth发布了新的文献求助10
刚刚
zxs完成签到,获得积分10
刚刚
读研头秃发布了新的文献求助10
刚刚
嫁个养熊猫的完成签到 ,获得积分10
1秒前
英姑应助rmrb采纳,获得10
1秒前
慕青应助camaelxin采纳,获得10
2秒前
张子洋完成签到,获得积分20
2秒前
高瑞完成签到,获得积分10
2秒前
Rmshuang应助ZZRR采纳,获得20
3秒前
3秒前
3秒前
星辰大海应助小白采纳,获得10
3秒前
兔兔完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
隐形曼青应助cc采纳,获得10
5秒前
zz完成签到,获得积分10
6秒前
dydxf完成签到,获得积分10
6秒前
可爱的函函应助hhh采纳,获得10
6秒前
xiao666发布了新的文献求助10
6秒前
helen完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
cangye发布了新的文献求助10
8秒前
XY完成签到,获得积分10
9秒前
巧克力完成签到 ,获得积分10
9秒前
小花完成签到,获得积分20
9秒前
9秒前
11秒前
少年发布了新的文献求助10
11秒前
11秒前
刘一安完成签到 ,获得积分10
12秒前
12秒前
water关注了科研通微信公众号
12秒前
Jiro发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723