清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Artificial Intelligence to Find the Optimal Margin Width in Hepatectomy for Colorectal Cancer Liver Metastases

医学 队列 边距(机器学习) 回顾性队列研究 结直肠癌 癌症 肝切除术 克拉斯 外科 普通外科 内科学 切除术 机器学习 计算机科学
作者
Dimitris Bertsimas,Georgios Antonios Margonis,Suleeporn Sujichantararat,Thomas Boerner,Yu Ma,Jane Wang,Carsten Kamphues,Kazunari Sasaki,Seehanah Tang,Johan Gagnière,Aurélien Dupré,Inger Marie Løes,Doris Wagner,Georgios Stasinos,Andrea Macher-Beer,Richard A. Burkhart,Daisuke Morioka,Katsunori Imai,Victoria Ardiles,Juan Manuel O’Connor,Timothy M. Pawlik,George A. Poultsides,Hendrik Seeliger,Katharina Beyer,Klaus Kaczirek,Peter Kornprat,Federico Aucejo,Eduardo de Santibañés,Hideo Baba,Itaru Endo,Per Eystein Lønning,Martin E. Kreis,Matthew J. Weiss,Christopher L. Wolfgang,Michael I. D’Angelica
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:157 (8): e221819-e221819 被引量:23
标识
DOI:10.1001/jamasurg.2022.1819
摘要

Importance

In patients with resectable colorectal cancer liver metastases (CRLM), the choice of surgical technique and resection margin are the only variables that are under the surgeon's direct control and may influence oncologic outcomes. There is currently no consensus on the optimal margin width.

Objective

To determine the optimal margin width in CRLM by using artificial intelligence–based techniques developed by the Massachusetts Institute of Technology and to assess whether optimal margin width should be individualized based on patient characteristics.

Design, Setting, and Participants

The internal cohort of the study included patients who underwent curative-intent surgery forKRAS-variant CRLM between January 1, 2000, and December 31, 2017, at Johns Hopkins Hospital, Baltimore, Maryland, Memorial Sloan Kettering Cancer Center, New York, New York, and Charité–University of Berlin, Berlin, Germany. Patients from institutions in France, Norway, the US, Austria, Argentina, and Japan were retrospectively identified from institutional databases and formed the external cohort of the study. Data were analyzed from April 15, 2019, to November 11, 2021.

Exposures

Hepatectomy.

Main Outcomes and Measures

Patients withKRAS-variant CRLM who underwent surgery between 2000 and 2017 at 3 tertiary centers formed the internal cohort (training and testing). In the training cohort, an artificial intelligence–based technique called optimal policy trees (OPTs) was used by building on random forest (RF) predictive models to infer the margin width associated with the maximal decrease in death probability for a given patient (ie, optimal margin width). The RF component was validated by calculating its area under the curve (AUC) in the testing cohort, whereas the OPT component was validated by a game theory–based approach called Shapley additive explanations (SHAP). Patients from international institutions formed an external validation cohort, and a new RF model was trained to externally validate the OPT-based optimal margin values.

Results

This cohort study included a total of 1843 patients (internal cohort, 965; external cohort, 878). The internal cohort included 386 patients (median [IQR] age, 58.3 [49.0-68.7] years; 200 men [51.8%]) withKRAS-variant tumors. The AUC of the RF counterfactual model was 0.76 in both the internal training and testing cohorts, which is the highest ever reported. The recommended optimal margin widths for patient subgroups A, B, C, and D were 6, 7, 12, and 7 mm, respectively. The SHAP analysis largely confirmed this by suggesting 6 to 7 mm for subgroup A, 7 mm for subgroup B, 7 to 8 mm for subgroup C, and 7 mm for subgroup D. The external cohort included 375 patients (median [IQR] age, 61.0 [53.0-70.0] years; 218 men [58.1%]) withKRAS-variant tumors. The new RF model had an AUC of 0.78, which allowed for a reliable external validation of the OPT-based optimal margin. The external validation was successful as it confirmed the association of the optimal margin width of 7 mm with a considerable prolongation of survival in the external cohort.

Conclusions and Relevance

This cohort study used artificial intelligence–based methodologies to provide a possible resolution to the long-standing debate on optimal margin width in CRLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙弟弟完成签到 ,获得积分10
2秒前
路过完成签到 ,获得积分10
10秒前
千帆破浪完成签到 ,获得积分10
15秒前
优秀的尔风完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
zyp应助科研通管家采纳,获得30
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
zyp应助科研通管家采纳,获得10
19秒前
研友_LpvQlZ完成签到,获得积分10
22秒前
lmq完成签到 ,获得积分10
29秒前
迈克老狼完成签到 ,获得积分10
31秒前
32秒前
36秒前
zjq完成签到 ,获得积分10
44秒前
Joker完成签到,获得积分10
1分钟前
ChatGPT发布了新的文献求助30
1分钟前
陌上之心完成签到 ,获得积分10
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
harden9159完成签到,获得积分10
1分钟前
夏日香气完成签到 ,获得积分10
1分钟前
1分钟前
kxawyy完成签到,获得积分10
1分钟前
謓言完成签到 ,获得积分20
2分钟前
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
微解感染发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助kxawyy采纳,获得10
2分钟前
zokor完成签到 ,获得积分10
2分钟前
Glory完成签到 ,获得积分10
2分钟前
田様应助微解感染采纳,获得10
2分钟前
斯文败类应助kxawyy采纳,获得10
2分钟前
三年三班三井寿完成签到,获得积分10
2分钟前
Kuga应助kxawyy采纳,获得10
2分钟前
2分钟前
柯伊达完成签到 ,获得积分10
3分钟前
BettyNie完成签到 ,获得积分10
3分钟前
rumengzhuo完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906993
求助须知:如何正确求助?哪些是违规求助? 3452391
关于积分的说明 10870258
捐赠科研通 3178271
什么是DOI,文献DOI怎么找? 1755864
邀请新用户注册赠送积分活动 849148
科研通“疑难数据库(出版商)”最低求助积分说明 791387