Using Artificial Intelligence to Find the Optimal Margin Width in Hepatectomy for Colorectal Cancer Liver Metastases

医学 队列 边距(机器学习) 回顾性队列研究 结直肠癌 癌症 肝切除术 克拉斯 外科 普通外科 内科学 切除术 机器学习 计算机科学
作者
Dimitris Bertsimas,Georgios Antonios Margonis,Suleeporn Sujichantararat,Thomas Boerner,Yu Ma,Jane Wang,Carsten Kamphues,Kazunari Sasaki,Seehanah Tang,Johan Gagnière,Aurélien Dupré,Inger Marie Løes,Doris Wagner,Georgios Stasinos,Andrea Macher-Beer,Richard A. Burkhart,Daisuke Morioka,Katsunori Imai,Victoria Ardiles,Juan Manuel O’Connor,Timothy M. Pawlik,George A. Poultsides,Hendrik Seeliger,Katharina Beyer,Klaus Kaczirek,Peter Kornprat,Federico Aucejo,Eduardo de Santibañés,Hideo Baba,Itaru Endo,Per Eystein Lønning,Martin E. Kreis,Matthew J. Weiss,Christopher L. Wolfgang,Michael I. D’Angelica
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:157 (8): e221819-e221819 被引量:23
标识
DOI:10.1001/jamasurg.2022.1819
摘要

Importance

In patients with resectable colorectal cancer liver metastases (CRLM), the choice of surgical technique and resection margin are the only variables that are under the surgeon's direct control and may influence oncologic outcomes. There is currently no consensus on the optimal margin width.

Objective

To determine the optimal margin width in CRLM by using artificial intelligence–based techniques developed by the Massachusetts Institute of Technology and to assess whether optimal margin width should be individualized based on patient characteristics.

Design, Setting, and Participants

The internal cohort of the study included patients who underwent curative-intent surgery forKRAS-variant CRLM between January 1, 2000, and December 31, 2017, at Johns Hopkins Hospital, Baltimore, Maryland, Memorial Sloan Kettering Cancer Center, New York, New York, and Charité–University of Berlin, Berlin, Germany. Patients from institutions in France, Norway, the US, Austria, Argentina, and Japan were retrospectively identified from institutional databases and formed the external cohort of the study. Data were analyzed from April 15, 2019, to November 11, 2021.

Exposures

Hepatectomy.

Main Outcomes and Measures

Patients withKRAS-variant CRLM who underwent surgery between 2000 and 2017 at 3 tertiary centers formed the internal cohort (training and testing). In the training cohort, an artificial intelligence–based technique called optimal policy trees (OPTs) was used by building on random forest (RF) predictive models to infer the margin width associated with the maximal decrease in death probability for a given patient (ie, optimal margin width). The RF component was validated by calculating its area under the curve (AUC) in the testing cohort, whereas the OPT component was validated by a game theory–based approach called Shapley additive explanations (SHAP). Patients from international institutions formed an external validation cohort, and a new RF model was trained to externally validate the OPT-based optimal margin values.

Results

This cohort study included a total of 1843 patients (internal cohort, 965; external cohort, 878). The internal cohort included 386 patients (median [IQR] age, 58.3 [49.0-68.7] years; 200 men [51.8%]) withKRAS-variant tumors. The AUC of the RF counterfactual model was 0.76 in both the internal training and testing cohorts, which is the highest ever reported. The recommended optimal margin widths for patient subgroups A, B, C, and D were 6, 7, 12, and 7 mm, respectively. The SHAP analysis largely confirmed this by suggesting 6 to 7 mm for subgroup A, 7 mm for subgroup B, 7 to 8 mm for subgroup C, and 7 mm for subgroup D. The external cohort included 375 patients (median [IQR] age, 61.0 [53.0-70.0] years; 218 men [58.1%]) withKRAS-variant tumors. The new RF model had an AUC of 0.78, which allowed for a reliable external validation of the OPT-based optimal margin. The external validation was successful as it confirmed the association of the optimal margin width of 7 mm with a considerable prolongation of survival in the external cohort.

Conclusions and Relevance

This cohort study used artificial intelligence–based methodologies to provide a possible resolution to the long-standing debate on optimal margin width in CRLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小六采纳,获得30
刚刚
xiubo128完成签到 ,获得积分10
2秒前
3秒前
薄荷小新完成签到 ,获得积分10
5秒前
8秒前
xiubo128完成签到 ,获得积分10
8秒前
学习使勇哥进步完成签到 ,获得积分10
10秒前
邹米文发布了新的文献求助10
10秒前
草民发布了新的文献求助10
12秒前
烟花应助zhuxx采纳,获得30
14秒前
pony完成签到,获得积分10
15秒前
ss应助xzy998采纳,获得10
17秒前
17秒前
17秒前
周周完成签到 ,获得积分10
18秒前
22秒前
24秒前
金皮卡发布了新的文献求助10
27秒前
37秒前
坦率雁卉完成签到,获得积分10
37秒前
37秒前
khaosyi完成签到 ,获得积分10
38秒前
spcwlh完成签到 ,获得积分10
39秒前
橙子完成签到,获得积分10
39秒前
zojoy完成签到,获得积分10
40秒前
40秒前
nidedaye发布了新的文献求助10
40秒前
彭于晏应助倪妮采纳,获得10
43秒前
只只发布了新的文献求助10
44秒前
ss应助求解限采纳,获得50
44秒前
zhuxx发布了新的文献求助30
44秒前
虚幻穆完成签到 ,获得积分10
46秒前
Hello应助冷傲中道采纳,获得10
47秒前
Aizen关注了科研通微信公众号
47秒前
中岛悠斗完成签到,获得积分10
49秒前
49秒前
50秒前
LHZ完成签到,获得积分10
53秒前
土豆发布了新的文献求助10
56秒前
kevin完成签到,获得积分10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401