Machine learning in subsurface geothermal energy: Two decades in review

地温梯度 机器学习 人工智能 地热能 储层建模 地质学 石油工程 计算机科学 工程类 地球物理学
作者
Esuru Rita Okoroafor,Connor M. Smith,Karen Ochie,Chinedu Joseph Nwosu,Halldora Gudmundsdottir,Mohammad Aljubran
出处
期刊:Geothermics [Elsevier BV]
卷期号:102: 102401-102401 被引量:21
标识
DOI:10.1016/j.geothermics.2022.102401
摘要

This paper reviews the trends in applying machine learning to subsurface geothermal resource development. The review is focused on the machine learning applications over the past two decades (from 2002 to 2021) to determine which machine learning algorithms are being used. In addition, the review seeks to determine what types of problems are being addressed with machine learning and how machine learning is aiding decision-making and problem-solving for subsurface aspects of the geothermal industry. The study shows that there has been a steady increase in the application of machine learning in the geothermal industry over the past 20 years, with an exponential increase in machine learning applications from 2018 to 2021. Several research areas associated with geothermal resource development were reviewed, including exploration, drilling, reservoir characterization, seismicity, petrophysics, reservoir engineering, and production and injection engineering. The study reveals that the field of reservoir characterization had the most significant applications of machine learning in the geothermal industry. Though machine learning has been applied across all the geothermal research areas we investigated, this study shows that there are still opportunities to improve and expand the adoption of machine learning in exploration, drilling, and seismicity. The main challenges that would need to be addressed are ensuring researchers have access to data, curating the data to be suitable for machine learning, and training geothermal industry students and professionals on artificial intelligence related to the energy sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助平常的飞风采纳,获得30
刚刚
y1lE完成签到,获得积分10
刚刚
Bob发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
王荷一发布了新的文献求助10
2秒前
Ava应助平淡道采纳,获得10
2秒前
4秒前
Hello应助进击的和尚采纳,获得10
4秒前
含蓄妖丽发布了新的文献求助10
4秒前
karma发布了新的文献求助30
5秒前
ntfn发布了新的文献求助10
6秒前
6秒前
7秒前
颓颓颓发布了新的文献求助10
7秒前
精明凡雁完成签到,获得积分10
7秒前
风吹麦浪完成签到,获得积分10
8秒前
慕洋发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
王金阳完成签到,获得积分20
9秒前
慕青应助mym采纳,获得10
9秒前
顺顺尼发布了新的文献求助10
10秒前
10秒前
星空办公室完成签到,获得积分10
10秒前
单薄的发卡完成签到,获得积分10
10秒前
闻紫彤完成签到,获得积分10
10秒前
叶叶完成签到,获得积分10
11秒前
LY发布了新的文献求助10
12秒前
12秒前
含蓄妖丽完成签到,获得积分10
12秒前
心灵美雨竹完成签到,获得积分10
13秒前
小龙女发布了新的文献求助20
13秒前
13秒前
小蘑菇应助22222采纳,获得10
13秒前
Kate发布了新的文献求助10
13秒前
14秒前
14秒前
zmnzmnzmn发布了新的文献求助10
15秒前
欣欣紫发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343