褐飞虱
生物
水稻
基因
转录组
代谢组学
生物逆境
植物抗病性
表型
WRKY蛋白质结构域
遗传学
基因表达
非生物胁迫
生物信息学
作者
Chen Su,Bo Sun,Zhenying Shi,Xuexia Miao,Haichao Li
摘要
Brown planthopper (BPH) and blast disease jointly or individually cause big yield losses every year. To identify genes and metabolites with potential contributions to the dual resistance against both biotic-stress factors, we carried out a transcriptome and metabolome analysis for susceptible and resistant rice varieties after BPH and rice blast infestations. Coexpression network analysis identified a modular pattern that had the highest correlation coefficients (0.81) after the BPH and rice blast (-0.81) treatments. In total, 134 phenylpropanoid biosynthesis pathway-related genes were detected in this group. We found that the flavanone 3-hydroxylase gene (OsF3H) had opposite expression trends in response to BPH and rice blast infestations whereas the OsF3'H had similar expression patterns. Genetics analysis confirmed that the OsF3H gene knockdown lines demonstrated the opposite resistance phenotypes against BPH and rice blast, whereas the OsF3'H knockout lines enhanced rice resistance against both pests. Consistently, our metabolomics analysis identified the metabolite eriodictyol, one putative essential product of these two genes, that was more highly accumulated in the resistant rice variety of RHT than in the susceptible variety MDJ. This study highlights a useful strategy for identifying more genes and metabolites that have potential synergistic effects on rice against to multiple biotic stresses.
科研通智能强力驱动
Strongly Powered by AbleSci AI