A Novel Adaptively Binarizing Magnitude Vector Method in Local Binary Pattern Based Framework for Texture Classification

震级(天文学) 像素 人工智能 模式识别(心理学) 数学 计算机视觉 纹理(宇宙学) 局部二进制模式 图像(数学) 图像纹理 二值图像 二进制数 计算机科学 直方图 图像处理 物理 算术 天文
作者
Shiqi Hu,Zhibin Pan,Jing Dong,Xincheng Ren
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:29: 852-856 被引量:18
标识
DOI:10.1109/lsp.2022.3158199
摘要

Local Binary Pattern (LBP) based framework only uses a scalar threshold to binarize all magnitude vectors in P different directions around each center pixel of a texture image. Hence, the original LBP-based framework, in fact, can not precisely extract different magnitude features in P different directions around each center pixel. Furthermore, the value of magnitude vectors can have dramatic changes from coarse areas to flat areas in the same texture image. Therefore, using a scalar threshold calculated from whole texture image can not precisely binarize all magnitude vectors in coarse areas and flat areas simultaneously. To overcome these two drawbacks, we propose a novel adaptively binarizing magnitude vector (ABMV) method. Firstly, we adaptively calculate the average vector threshold $\boldsymbol{\vec{t}_{P}}$ with P different directional values of all magnitude vectors to replace the scalar threshold t to binarize the magnitude vectors. The proposed ABMV method can more precisely extract the different magnitude features in P different directions around each center pixel. Secondly, we divide the original texture image into smaller sub-images and adaptively extract their average vector threshold from each sub-image separately. Because the correlation of the pixels in the same sub-image is stronger than that in a whole texture image, the ABMV method can more precisely extract different magnitude features from either coarse areas or flat areas. Finally, we introduce the proposed ABMV method into LBP-based framework. Extensive experiments are conducted on five representative texture databases: Outex, UIUC, CUReT, XU_HR and ALOT database. After introducing the ABMV method into CLBP, CLBC, BRINT and CJLBP, the classification accuracy and the robustness to noise of these methods can be significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩千儿应助wuran采纳,获得10
刚刚
小马甲应助wuran采纳,获得10
刚刚
1秒前
映城发布了新的文献求助50
2秒前
2秒前
852应助欣欣采纳,获得10
2秒前
3秒前
超快乐完成签到 ,获得积分10
3秒前
Hello应助Rainbow采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
6秒前
木木完成签到 ,获得积分10
6秒前
尤珩完成签到,获得积分10
7秒前
8秒前
CodeCraft应助yongheng采纳,获得10
8秒前
Liuzihao发布了新的文献求助10
8秒前
纯真的雨发布了新的文献求助10
9秒前
zhuan发布了新的文献求助10
9秒前
9秒前
初雪平寒发布了新的文献求助10
10秒前
杏仁核发布了新的文献求助10
13秒前
13秒前
123456完成签到 ,获得积分10
13秒前
张乔然发布了新的文献求助30
13秒前
柴桑青木应助1111采纳,获得50
13秒前
14秒前
15秒前
欣欣发布了新的文献求助10
16秒前
ccalvintan发布了新的文献求助10
17秒前
19秒前
21秒前
白羊林完成签到,获得积分10
22秒前
欣欣完成签到,获得积分10
22秒前
西奥完成签到 ,获得积分10
24秒前
俞秋烟发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525631
求助须知:如何正确求助?哪些是违规求助? 3965806
关于积分的说明 12291187
捐赠科研通 3630154
什么是DOI,文献DOI怎么找? 1997868
邀请新用户注册赠送积分活动 1034138
科研通“疑难数据库(出版商)”最低求助积分说明 923776