Artificial intelligence reinforced upconversion nanoparticle-based lateral flow assay via transfer learning

计算机科学 人工智能 稳健性(进化) 学习迁移 机器学习 预处理器 生物化学 化学 基因
作者
Wei Wang,Kuo Chen,Xing Ma,Jinhong Guo
出处
期刊:Fundamental research [Elsevier]
卷期号:3 (4): 544-556 被引量:22
标识
DOI:10.1016/j.fmre.2022.03.025
摘要

The combination of upconverting nanoparticles (UCNPs) and immunochromatography has become a widely used and promising new detection technique for point-of-care testing (POCT). However, their low luminescence efficiency, non-specific adsorption, and image noise have always limited their progress toward practical applications. Recently, artificial intelligence (AI) has demonstrated powerful representational learning and generalization capabilities in computer vision. We report for the first time a combination of AI and upconversion nanoparticle-based lateral flow assays (UCNP-LFAs) for the quantitative detection of commercial internet of things (IoT) devices. This universal UCNPs quantitative detection strategy combines high accuracy, sensitivity, and applicability in the field detection environment. By using transfer learning to train AI models in a small self-built database, we not only significantly improved the accuracy and robustness of quantitative detection, but also efficiently solved the actual problems of data scarcity and low computing power of POCT equipment. Then, the trained AI model was deployed in IoT devices, whereby the detection process does not require detailed data preprocessing to achieve real-time inference of quantitative results. We validated the quantitative detection of two detectors using eight transfer learning models on a small dataset. The AI quickly provided ultra-high accuracy prediction results (some models could reach 100% accuracy) even when strong noise was added. Simultaneously, the high flexibility of this strategy promises to be a general quantitative detection method for optical biosensors. We believe that this strategy and device have a scientific significance in revolutionizing the existing POCT technology landscape and providing excellent commercial value in the in vitro diagnostics (IVD) industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qian发布了新的文献求助10
刚刚
刚刚
刚刚
包容夕阳完成签到,获得积分10
1秒前
闪闪的又亦完成签到 ,获得积分10
1秒前
JamesPei应助鹅鹅鹅采纳,获得10
1秒前
2秒前
结实无敌完成签到,获得积分10
2秒前
Enthusiastic完成签到,获得积分10
3秒前
王楠楠完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
Stacey发布了新的文献求助10
4秒前
4秒前
坦率灵煌完成签到,获得积分10
4秒前
乐安完成签到 ,获得积分10
4秒前
Criminology34应助木维采纳,获得10
5秒前
令狐远航完成签到,获得积分20
5秒前
Nick_YFWS发布了新的文献求助10
5秒前
5秒前
令狐远航发布了新的文献求助10
7秒前
lll发布了新的文献求助10
7秒前
幸福的念双完成签到,获得积分10
7秒前
深情安青应助DKW采纳,获得10
8秒前
8秒前
热河发布了新的文献求助10
8秒前
HANGOVERG发布了新的文献求助10
9秒前
9秒前
9秒前
爱大美发布了新的文献求助10
9秒前
10秒前
Criminology34应助木维采纳,获得10
11秒前
seattletszd完成签到,获得积分10
11秒前
zhang完成签到,获得积分10
12秒前
1010完成签到,获得积分10
12秒前
LuLu发布了新的文献求助10
13秒前
qucheng完成签到 ,获得积分10
13秒前
彭于晏应助鱼摆摆摆摆采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403