Partial Domain Adaptation Method Based on Class-Weighted Alignment for Fault Diagnosis of Rotating Machinery

加权 计算机科学 域适应 人工智能 适应(眼睛) 残余物 分类器(UML) 领域(数学分析) 机器学习 块(置换群论) 班级(哲学) 数据挖掘 算法 模式识别(心理学) 数学 数学分析 放射科 几何学 物理 光学 医学
作者
Xiao Zhang,Jinrui Wang,Sixiang Jia,Baokun Han,Zongzhen Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:28
标识
DOI:10.1109/tim.2022.3178488
摘要

Domain adaptation (DA)-based methods for fault diagnosis (FD) of rotating machinery have achieved impressive results in recent years. Most methods hold the assumption that the source domain (SD) and target domain (TD) share the same label space, which is not always satisfied in actual situations. A more practical scenario called partial domain adaptation (PDA) needs to be given more attention, where the transferable knowledge learned from a larger SD is applied to a smaller but relevant TD. A PDA method called class-weighted alignment-based transfer network (CWATN) is proposed in this paper to adapt to this scenario. A novel weighting method is designed to adapt the data distributions of shared classes. Except for weighted class-level alignment, global-level feature adaptation is also considered to learn more general transferable knowledge. Moreover, a domain discrepancy learning block is plugged in the shared classifier as a residual block, which could enforce the network to learn and measure the discrepancy between SD and TD explicitly, thus improving the result of DA. Three case studies are implemented to verify the superiority of CWATN. Results demonstrate that the proposed method could obtain better diagnostic performance than the selected competitive methods in the PDA scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助wnz采纳,获得30
1秒前
酷波er应助你好呀采纳,获得10
1秒前
吴炫完成签到,获得积分10
1秒前
科研通AI2S应助sp采纳,获得10
2秒前
2秒前
Code_Insect完成签到,获得积分10
3秒前
天天快乐应助沈彬彬采纳,获得10
3秒前
欢喜海完成签到,获得积分10
3秒前
zengyiqiao给zengyiqiao的求助进行了留言
3秒前
惊执虫儿完成签到,获得积分10
3秒前
4秒前
宋宋发布了新的文献求助10
5秒前
善学以致用应助王迪迪采纳,获得10
6秒前
ding应助吴世宇采纳,获得10
7秒前
ew发布了新的文献求助10
7秒前
李健的小迷弟应助刘卓岩采纳,获得10
7秒前
bbdan发布了新的文献求助10
8秒前
可爱千兰完成签到,获得积分10
9秒前
9秒前
hxm完成签到,获得积分10
9秒前
超级的妙晴完成签到 ,获得积分10
10秒前
情怀应助沉思录采纳,获得10
11秒前
今后应助阿呆采纳,获得10
11秒前
12秒前
13秒前
科研助手6应助rtx00采纳,获得10
13秒前
yezhujing发布了新的文献求助10
13秒前
可可杨发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
你好呀完成签到,获得积分10
15秒前
15秒前
一捺发布了新的文献求助10
15秒前
董波波发布了新的文献求助10
15秒前
奋斗的舒芙蕾完成签到,获得积分10
15秒前
cdercder应助顾闭月采纳,获得10
17秒前
殷勤的凝莲完成签到,获得积分10
17秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813827
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10392842
捐赠科研通 3075520
什么是DOI,文献DOI怎么找? 1689390
邀请新用户注册赠送积分活动 812756
科研通“疑难数据库(出版商)”最低求助积分说明 767387