亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Three Different Phenotypes in Anti–Melanoma Differentiation–Associated Gene 5 Antibody–Positive Dermatomyositis Patients: Implications for Prediction of Rapidly Progressive Interstitial Lung Disease

皮肌炎 医学 内科学 鉴定(生物学) 间质性肺病 抗体 病理 疾病 临床表型 黑色素瘤 表型 免疫学 生物 基因 癌症研究 遗传学 植物
作者
Lingxiao Xu,Hanxiao You,Lei Wang,Chengyin Lv,Fenghong Yuan,Ju Li,Min Wu,Zhanyun Da,Hua Wei,Wei Yan,Lei Zhou,Songlou Yin,Dongmei Zhou,Jian Wu,Yan Lü,Dinglei Su,Zhichun Liu,Lin Liu,Longxin Ma,Xiaoyan Xu
出处
期刊:Arthritis & rheumatology [Wiley]
卷期号:75 (4): 609-619 被引量:74
标识
DOI:10.1002/art.42308
摘要

Objective There is substantial heterogeneity among the phenotypes of patients with anti–melanoma differentiation–associated gene 5 antibody–positive (anti‐MDA5+) dermatomyositis (DM), hindering disease assessment and management. This study aimed to identify distinct phenotype groups in patients with anti‐MDA5+ DM and to determine the utility of these phenotypes in predicting patient outcomes. Methods A total of 265 patients with anti‐MDA5+ DM were retrospectively enrolled in the study. An unsupervised hierarchical cluster analysis was performed to characterize the different phenotypes. Results Patients were stratified into 3 clusters characterized by markedly different features and outcomes. Cluster 1 (n = 108 patients) was characterized by mild risk of rapidly progressive interstitial lung disease (RPILD), with the cumulative incidence of non‐RPILD being 85.2%. Cluster 2 (n = 72 patients) was characterized by moderate risk of RPILD, with the cumulative incidence of non‐RPILPD being 73.6%. Patients in cluster 3 (n = 85 patients), which was characterized by a high risk of RPILD and a cumulative non‐RPILD incidence of 32.9%, were more likely than patients in the other 2 subgroups to have anti–Ro 52 antibodies in conjunction with high titers of anti‐MDA5 antibodies. All‐cause mortality rates of 60%, 9.7%, and 3.7% were determined for clusters 3, 2, and 1, respectively ( P < 0.0001). Decision tree analysis led to the development of a simple algorithm for anti‐MDA5+ DM patient classification that included the following 8 variables: age >50 years, disease course of <3 months, myasthenia (proximal muscle weakness), arthritis, C‐reactive protein level, creatine kinase level, anti–Ro 52 antibody titer, and anti‐MDA5 antibody titer. This algorithm placed patients in the appropriate cluster with 78.5% accuracy in the development cohort and 70.0% accuracy in the external validation cohort. Conclusion Cluster analysis identified 3 distinct clinical patterns and outcomes in our large cohort of anti‐MDA5+ DM patients. Classification of DM patients into phenotype subgroups with prognostic values may help physicians improve the efficacy of clinical decision‐making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Cherry发布了新的文献求助10
15秒前
LM完成签到,获得积分10
29秒前
汉堡包应助Epiphany采纳,获得10
40秒前
桦奕兮完成签到 ,获得积分10
57秒前
CWY发布了新的文献求助50
1分钟前
彭于晏应助wdsgkfjhn采纳,获得10
1分钟前
飞天大南瓜完成签到,获得积分10
1分钟前
终归完成签到 ,获得积分10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
辉辉应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
13633501455完成签到 ,获得积分10
2分钟前
2分钟前
犬来八荒发布了新的文献求助10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
2分钟前
2分钟前
上官若男应助温婉的凝雁采纳,获得10
2分钟前
Alvin完成签到 ,获得积分10
2分钟前
温婉的凝雁完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
王玉发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Cherry发布了新的文献求助10
4分钟前
4分钟前
昌莆完成签到 ,获得积分10
4分钟前
4分钟前
冉亦完成签到,获得积分10
4分钟前
搜集达人应助null采纳,获得10
4分钟前
可爱的函函应助香菜肉丸采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091