Integrated GC-MS/MS Metabolomics in Cardiovascular Disease: Targeted Nitro-Oleic Acid Quantification Meets Untargeted Profiling

衍生化 代谢组 代谢组学 化学 代谢物 色谱法 代谢途径 硅烷化 生物标志物 生物化学 计算生物学 质谱法 生物标志物发现 药理学 液相色谱-质谱法 内生
作者
Yasmin Elshoura,Magy Herz,Mohamed Z. Gad,Rasha S. Hanafi
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c05647
摘要

In recent decades, interest in nitrated fatty acids (NO2-FAs) has grown due to their role as endogenous signaling molecules involved in health and disease. As a result, their metabolic profiling has gained increasing attention. For metabolite analysis, GC-MS/MS offers greater sensitivity and robustness than LC-MS/MS, with more reliable annotation libraries. This study investigates metabolic dysregulation in cardiovascular disease (CVD) patients by using advanced metabolomics. A novel GC-MS/MS method for profiling NO2-FAs was developed, showing improved precision using 17-BrHDA as an internal standard compared to previous HDA-based methods. It is also the first report of alkylation and silylation derivatization of 17-BrHDA, demonstrating superior GC-MS sensitivity for pentafluorobenzyl-alkylated fatty acids over their silylated counterparts in positive ion mode. Untargeted metabolomics was applied to plasma samples from acute myocardial infarction (AMI) patients and healthy controls using both derivatization techniques. Multivariate analysis (PCA and PLS-DA) revealed distinct metabolic profiles. Key metabolites, identified based on VIP scores, were annotated via the Human Metabolome Database and literature. Findings highlight the complementary nature of both derivatization approaches for comprehensive plasma metabolome analysis. Notably, NO2-OA levels were significantly elevated (p < 0.01) in AMI patients, indicating its possibility to be utilized as a cardiovascular biomarker. This study represents the first use of alkylation derivatization in untargeted metabolomics for AMI and introduces a highly sensitive GC-MS/MS method with an innovative internal standard and optimized derivatization for cardiovascular biomarker discovery. The method demonstrates the potential to discriminate between groups of patients and healthy subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西行纪完成签到,获得积分10
2秒前
懒大王完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
3秒前
HYDROGEL发布了新的文献求助10
6秒前
卡皮巴拉yuan应助平淡远山采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
ccshi完成签到,获得积分10
9秒前
10秒前
眼睛大的迎梦完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
12秒前
Pebble1完成签到,获得积分10
12秒前
13秒前
Mr.H完成签到 ,获得积分10
13秒前
负责蜜蜂发布了新的文献求助10
14秒前
苏苏完成签到,获得积分10
14秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
zqh完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
wy.he应助科研通管家采纳,获得30
17秒前
17秒前
科研通AI2S应助Pebble1采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
熬夜波比应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
wy.he应助科研通管家采纳,获得10
18秒前
18秒前
不及阁大学士完成签到,获得积分10
18秒前
英姑应助lv采纳,获得10
19秒前
在水一方应助67n采纳,获得10
19秒前
完美世界应助读书的时候采纳,获得10
20秒前
万能图书馆应助zzz采纳,获得10
21秒前
Liangyu发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700378
求助须知:如何正确求助?哪些是违规求助? 5136704
关于积分的说明 15229865
捐赠科研通 4855349
什么是DOI,文献DOI怎么找? 2605292
邀请新用户注册赠送积分活动 1556687
关于科研通互助平台的介绍 1514718