材料科学
纳米复合材料
弯曲半径
复合材料
压力传感器
透明度(行为)
电介质
电极
触觉传感器
纳米技术
制作
光电子学
弯曲
机械工程
计算机科学
医学
化学
替代医学
计算机安全
物理化学
病理
人工智能
机器人
工程类
作者
Jae‐Young Yoo,Min‐Ho Seo,Jae‐Shin Lee,Kwang‐Wook Choi,Min‐Seung Jo,Jun‐Bo Yoon
标识
DOI:10.1002/adfm.201804721
摘要
Abstract Force touch sensors have received a great deal of attention for various applications owing to their versatile ability to detect touch and pressure. To demonstrate high‐performance force touch sensors, numerous studies have been performed, focusing on high sensitivity, transparency, and mechanical durability against bending. However, it is still challenging to apply force touch sensors in flexible applications, because their sensing performance is subject to change and degraded by induced mechanical stress and deformation when the device is bent. Here, a high‐performance and transparent nanoforce touch sensor with bending‐insensitivity is reported. This is achieved by developing a thin, flexible, and transparent hierarchical nanocomposite film, which is composed of a nanostructured plastic base, coplanar electrodes, and a dielectric polymer layer with silver nanoparticles. The fabrication process is simple that high manufacturing repeatability, uniformity, and reliability are achieved on a large‐area (8 in.) scale. The fabricated device shows a pressure sensitivity of 0.036 kPa −1 with high transparency (83%) in a pressure range up to 3 kPa. In particular, its thin thickness (45 µm) and the coplanar electrode enable to achieve excellent insensitivity to the bending with a radius of curvature of 4 mm more than 10 000 times.
科研通智能强力驱动
Strongly Powered by AbleSci AI