正确性
维数(图论)
秘密分享
量子纠缠
一般化
方案(数学)
数学
多方
独立性(概率论)
离散数学
量子
表征(材料科学)
组合数学
量子力学
密码学
物理
算法
数学分析
统计
光学
作者
Sarbani Roy,Sourav Mukhopadhyay
出处
期刊:Physical review
[American Physical Society]
日期:2019-07-15
卷期号:100 (1)
被引量:22
标识
DOI:10.1103/physreva.100.012319
摘要
We present a device independent quantum secret sharing scheme in arbitrary even dimension. We propose a $d$-dimensional $N$-partite linear game, utilizing a generic multipartite higher dimensional Bell inequality, a generalization of Mermin's inequality in the higher dimension. Probability to win this linear game defines the device independence test of the proposed scheme. The security is proved under causal independence of measurement devices and it is based on the polygamy property of entanglement. By defining $\epsilon_{cor}$-correctness and $\epsilon^c$-completeness for a quantum secret sharing scheme, we have also shown that the proposed scheme is $\epsilon_{cor}$-correct and $\epsilon^c$-complete.
科研通智能强力驱动
Strongly Powered by AbleSci AI