亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies

支持向量机 人工智能 机器学习 药物数据库 相似性(几何) 成对比较 计算机科学 核(代数) 数据挖掘 药品 数学 医学 组合数学 图像(数学) 精神科
作者
Dalong Song,Yao Chen,Min Qian,Qingrong Sun,Kai Ye,Changjiang Zhou,Shengyue Yuan,Zhaolin Sun,Jun Liao
出处
期刊:Journal of Clinical Pharmacy and Therapeutics [Wiley]
卷期号:44 (2): 268-275 被引量:59
标识
DOI:10.1111/jcpt.12786
摘要

What is known and objective Drug-drug interactions (DDI) are frequent causes of adverse clinical drug reactions. Efforts have been directed at the early stage to achieve accurate identification of DDI for drug safety assessments, including the development of in silico predictive methods. In particular, similarity-based in silico methods have been developed to assess DDI with good accuracies, and machine learning methods have been employed to further extend the predictive range of similarity-based approaches. However, the performance of a developed machine learning method is lower than expectations partly because of the use of less diverse DDI training data sets and a less optimal set of similarity measures. Method In this work, we developed a machine learning model using support vector machines (SVMs) based on the literature-reported established set of similarity measures and comprehensive training data sets. The established similarity measures include the 2D molecular structure similarity, 3D pharmacophoric similarity, interaction profile fingerprint (IPF) similarity, target similarity and adverse drug effect (ADE) similarity, which were extracted from well-known databases, such as DrugBank and Side Effect Resource (SIDER). A pairwise kernel was constructed for the known and possible drug pairs based on the five established similarity measures and then used as the input vector of the SVM. Result The 10-fold cross-validation studies showed a predictive performance of AUROC >0.97, which is significantly improved compared with the AUROC of 0.67 of an analogously developed machine learning model. Our study suggested that a similarity-based SVM prediction is highly useful for identifying DDI. Conclusion in silico methods based on multifarious drug similarities have been suggested to be feasible for DDI prediction in various studies. In this way, our pairwise kernel SVM model had better accuracies than some previous works, which can be used as a pharmacovigilance tool to detect potential DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
囧神发布了新的文献求助10
5秒前
11秒前
里昂义务发布了新的文献求助10
16秒前
姚老表完成签到,获得积分10
47秒前
L_MD完成签到,获得积分10
54秒前
研友_n2rRqn完成签到 ,获得积分10
1分钟前
1分钟前
wop111发布了新的文献求助20
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
科研通AI5应助杨惠子采纳,获得10
2分钟前
2分钟前
wop111发布了新的文献求助20
2分钟前
杨惠子发布了新的文献求助10
2分钟前
白家瑜发布了新的文献求助10
3分钟前
杨惠子完成签到,获得积分10
3分钟前
NexusExplorer应助谨慎的雁桃采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
kitty777完成签到,获得积分10
3分钟前
kitty777发布了新的文献求助10
4分钟前
4分钟前
ruru发布了新的文献求助10
4分钟前
4分钟前
三千月色么么哒完成签到,获得积分10
4分钟前
Demi_Ming完成签到,获得积分10
4分钟前
cheers发布了新的文献求助10
4分钟前
4分钟前
4分钟前
6分钟前
英俊的铭应助Lin采纳,获得20
6分钟前
无花果应助wop111采纳,获得20
7分钟前
7分钟前
Lin发布了新的文献求助20
7分钟前
8分钟前
8分钟前
科目三应助cy采纳,获得10
8分钟前
研友_VZG7GZ应助cheers采纳,获得10
8分钟前
yolo发布了新的文献求助10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019764
求助须知:如何正确求助?哪些是违规求助? 4258512
关于积分的说明 13271269
捐赠科研通 4063632
什么是DOI,文献DOI怎么找? 2222664
邀请新用户注册赠送积分活动 1231738
关于科研通互助平台的介绍 1155010