Task-Aware Attention Model for Clothing Attribute Prediction

服装 计算机科学 任务(项目管理) 领域(数学分析) 人工智能 机器学习 地点 任务分析 机制(生物学) 人机交互 工程类 数学分析 语言学 数学 考古 系统工程 认识论 历史 哲学
作者
Sanyi Zhang,Zhanjie Song,Xiaochun Cao,Hua Zhang,Jie Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (4): 1051-1064 被引量:44
标识
DOI:10.1109/tcsvt.2019.2902268
摘要

Clothing attribute recognition, especially in unconstrained street images, is a challenging task for multimedia. Existing methods for multi-task clothing attribute prediction often ignore the relation between specific attributes and positions. However, the attribute response is always location-sensitive, i.e., different spatial locations have various contributions to attributes. Inspired by the locality of clothing attributes, in this paper, we introduce the attention mechanism to incorporate the impact of positions for clothing attribute prediction with only image-level annotations. However, the performance improvement is limited if we directly use the traditional spatial attention model for each task since it does not take the influence from other tasks into account. Instead, we propose a novel task-aware attention mechanism, which estimates the importance of each position across different tasks. We first evaluate a task attention network with an end-to-end multi-task clothing attribute learning architecture on the shop domain. And then, we employ curriculum learning strategy, which transfers the well-trained shop domain attribute knowledge to the street domain attribute prediction. Experiments are conducted on three clothing benchmarks, i.e., cross-domain clothing attribute dataset, woman clothing dataset, and man clothing dataset. The performance of attribute prediction demonstrates the superiority of the proposed task-aware attention mechanism over several state-of-the-art methods both in shop and street domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情琦发布了新的文献求助10
刚刚
刚刚
刚刚
阿苗完成签到 ,获得积分10
刚刚
刚刚
过分动真发布了新的文献求助10
1秒前
静宝完成签到,获得积分20
1秒前
糯糯发布了新的文献求助10
1秒前
1秒前
甜甜的运发布了新的文献求助10
1秒前
爱听歌的白开水完成签到 ,获得积分10
2秒前
Owen应助WGS采纳,获得10
2秒前
科研通AI6应助轻松的悟空采纳,获得10
2秒前
2秒前
小蘑菇应助轻松的悟空采纳,获得10
2秒前
香蕉觅云应助轻松的悟空采纳,获得10
2秒前
Orange应助轻松的悟空采纳,获得10
2秒前
CipherSage应助轻松的悟空采纳,获得10
2秒前
科研通AI6应助Wb采纳,获得10
2秒前
嗯呢发布了新的文献求助10
3秒前
3秒前
shadow发布了新的文献求助10
4秒前
4秒前
追寻的怜容完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
俊逸若之发布了新的文献求助10
4秒前
白菜完成签到,获得积分10
5秒前
6秒前
碧蓝代珊完成签到,获得积分10
6秒前
6秒前
Ava应助lilx采纳,获得10
6秒前
大意的博完成签到,获得积分10
6秒前
Jie_huang发布了新的文献求助20
7秒前
7秒前
8秒前
啊啊啊啊发布了新的文献求助10
8秒前
陶醉发箍发布了新的文献求助10
8秒前
小六九发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071167
求助须知:如何正确求助?哪些是违规求助? 4292013
关于积分的说明 13372748
捐赠科研通 4112513
什么是DOI,文献DOI怎么找? 2252022
邀请新用户注册赠送积分活动 1257123
关于科研通互助平台的介绍 1189843