Stable Prediction across Unknown Environments

计算机科学 人工智能 机器学习 分类器(UML) 特征选择 维数之咒 概率逻辑 降维 数据挖掘
作者
Kun Kuang,Peng Cui,Susan Athey,Ruoxuan Xiong,Bo Li
出处
期刊:Cornell University - arXiv 卷期号:: 1617-1626 被引量:163
标识
DOI:10.1145/3219819.3220082
摘要

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting training data with the ratio of the density between test and training data. However, in many applications training takes place without prior knowledge of the testing distribution. Recently, methods have been proposed to address the shift by learning the underlying causal structure, but those methods rely on diversity arising from multiple training data sets, and they further have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimation of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real datasets demonstrate that our algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lxy完成签到,获得积分10
1秒前
1秒前
PROPELLER发布了新的文献求助50
1秒前
科研通AI2S应助董浩楠采纳,获得10
2秒前
Felix完成签到,获得积分10
2秒前
美羊羊完成签到,获得积分20
2秒前
2秒前
dong发布了新的文献求助10
3秒前
3秒前
汉堡包应助小云采纳,获得10
3秒前
隐形曼青应助桃子e采纳,获得10
3秒前
火柴two完成签到,获得积分10
3秒前
3秒前
上官若男应助愉快的翅膀采纳,获得10
3秒前
gaos发布了新的文献求助10
4秒前
缓慢晟睿完成签到,获得积分10
5秒前
美羊羊发布了新的文献求助10
6秒前
6秒前
超级水壶发布了新的文献求助10
6秒前
HANZHANG完成签到,获得积分10
6秒前
田様应助陈梦鼠采纳,获得10
7秒前
小马甲应助cza采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
小二郎应助暖暖采纳,获得10
9秒前
make217完成签到 ,获得积分10
9秒前
大个应助开心秋天采纳,获得10
10秒前
愉快的翅膀完成签到,获得积分10
11秒前
11秒前
FashionBoy应助随风采纳,获得10
11秒前
小吴发布了新的文献求助10
12秒前
dong完成签到,获得积分10
12秒前
12秒前
易旸完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688