线粒体分裂
生物
线粒体
DNM1L型
磷酸化
细胞生物学
线粒体DNA
分子生物学
遗传学
基因
作者
Rojeen Shahni,Catherine M. Cale,Glenn Anderson,Laura D. Osellame,Sophie Hambleton,Thomas S. Jacques,Yehani Wedatilake,Jan‐Willem Taanman,Emma Chan,Waseem Qasim,Vincent Plagnol,Annapurna Chalasani,Michael R. Duchen,Kimberly Gilmour,Shamima Rahman
出处
期刊:Brain
[Oxford University Press]
日期:2015-06-29
卷期号:138 (10): 2834-2846
被引量:92
摘要
See Dasgupta et al. (doi:10.1093/awv237) for a scientific commentary on this article. Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1S616), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1S637), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1S616 levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1S616 levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer's, Huntington's and Parkinson's diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis. See Dasgupta et al. (doi:10.1093/awv237) for a scientific commentary on this article. Shahni et al. identify a novel mutation in STAT2, which encodes a component of the JAK-STAT cytokine signalling pathway, in three patients with severe neurological deterioration following viral infection. STAT2 is shown to regulate mitochondrial fission, suggesting a new avenue for treatment of mitochondrial diseases and possibly common neurodegenerative disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI