The Li-Ion Rechargeable Battery: A Perspective

电解质 电池(电) 阳极 阴极 化学 电极 离子 电压 储能 电化学 化学工程 分析化学(期刊) 电气工程 功率(物理) 热力学 有机化学 物理化学 工程类 物理
作者
John B. Goodenough,Kyu‐Sung Park
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:135 (4): 1167-1176 被引量:8670
标识
DOI:10.1021/ja3091438
摘要

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Larry1226发布了新的文献求助10
2秒前
caicai完成签到,获得积分10
2秒前
慕青应助生医工小博采纳,获得10
3秒前
3秒前
Sophia发布了新的文献求助10
4秒前
4秒前
英俊的铭应助dd采纳,获得30
4秒前
water应助Xenia采纳,获得10
4秒前
文七七完成签到,获得积分20
6秒前
6秒前
pphu完成签到,获得积分10
7秒前
FashionBoy应助caicai采纳,获得10
7秒前
wqc2060发布了新的文献求助10
8秒前
一只CY完成签到,获得积分10
8秒前
喜悦落雁发布了新的文献求助10
9秒前
传奇3应助昏睡的蟠桃采纳,获得10
9秒前
pphu发布了新的文献求助10
9秒前
热塑性哈士奇完成签到,获得积分10
10秒前
大个应助lmr采纳,获得10
10秒前
cheng发布了新的文献求助10
12秒前
酷波er应助肖聪采纳,获得10
13秒前
14秒前
无情元瑶完成签到,获得积分20
15秒前
15秒前
wuwa完成签到,获得积分10
15秒前
16秒前
打打应助追寻的灵竹采纳,获得10
18秒前
19秒前
梅豪完成签到,获得积分10
19秒前
哆啦A梦完成签到,获得积分10
20秒前
20秒前
无情元瑶发布了新的文献求助10
20秒前
大模型应助鲜于枫采纳,获得10
21秒前
FlipFlops完成签到,获得积分10
21秒前
22秒前
gky完成签到,获得积分10
22秒前
22秒前
22秒前
我爱妹妹发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939767
求助须知:如何正确求助?哪些是违规求助? 3485848
关于积分的说明 11034820
捐赠科研通 3215734
什么是DOI,文献DOI怎么找? 1777373
邀请新用户注册赠送积分活动 863506
科研通“疑难数据库(出版商)”最低求助积分说明 798908