The Li-Ion Rechargeable Battery: A Perspective

电解质 电池(电) 阳极 阴极 化学 电极 离子 电压 储能 电化学 化学工程 分析化学(期刊) 电气工程 功率(物理) 热力学 有机化学 物理化学 工程类 物理
作者
John B. Goodenough,Kyu‐Sung Park
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:135 (4): 1167-1176 被引量:8465
标识
DOI:10.1021/ja3091438
摘要

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文可仁完成签到,获得积分10
2秒前
思源应助HuaqingLiu采纳,获得10
5秒前
pluto应助wangyanling采纳,获得10
5秒前
5秒前
彭于晏应助Ryan采纳,获得10
6秒前
9秒前
Rye227应助俏皮诺言采纳,获得10
10秒前
99v587发布了新的文献求助10
11秒前
12秒前
英姑应助和谐冰菱采纳,获得10
13秒前
lyabigale完成签到 ,获得积分10
14秒前
光之霓裳完成签到 ,获得积分10
15秒前
20秒前
22秒前
奶酪芝士发布了新的文献求助10
24秒前
25秒前
在水一方应助99v587采纳,获得10
26秒前
酷波er应助greenandblue采纳,获得10
27秒前
27秒前
28秒前
茶茶发布了新的文献求助10
29秒前
上善若火完成签到 ,获得积分10
29秒前
简珹楚完成签到 ,获得积分10
31秒前
天天快乐应助茶茶采纳,获得10
34秒前
wcx发布了新的文献求助10
34秒前
chenshi0515完成签到 ,获得积分10
35秒前
乐乐应助XX采纳,获得10
36秒前
大闲鱼铭一完成签到 ,获得积分10
38秒前
YY完成签到 ,获得积分10
38秒前
小晃晃完成签到 ,获得积分10
42秒前
xia发布了新的文献求助10
42秒前
wcx完成签到,获得积分10
42秒前
Hoiden完成签到,获得积分10
43秒前
慕青应助郭小宝采纳,获得10
44秒前
45秒前
111发布了新的文献求助10
47秒前
Orange应助科研通管家采纳,获得10
48秒前
Jasper应助科研通管家采纳,获得10
48秒前
小二郎应助科研通管家采纳,获得10
48秒前
彭于晏应助科研通管家采纳,获得30
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780078
求助须知:如何正确求助?哪些是违规求助? 3325423
关于积分的说明 10223034
捐赠科研通 3040585
什么是DOI,文献DOI怎么找? 1668935
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614