单层
硫族元素
过渡金属
Atom(片上系统)
材料科学
结晶学
化学气相沉积
晶界
化学
纳米技术
化学物理
催化作用
有机化学
微观结构
计算机科学
嵌入式系统
作者
Qiyi Fang,Zhepeng Zhang,Qingqing Ji,Siya Zhu,Yue Gong,Yù Zhang,Jianping Shi,Xiebo Zhou,Lin Gu,Qian Wang,Yanfeng Zhang
出处
期刊:Nano Research
[Springer Nature]
日期:2017-04-20
卷期号:10 (8): 2761-2771
被引量:17
标识
DOI:10.1007/s12274-017-1480-z
摘要
Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo−S−Se hybrids. Moreover, we detect a large compressive strain (approximately −10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T' at the reaction temperature of 500 °C. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI