清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantifying Selection Pressure

选择(遗传算法) 计算机科学 进化算法 组分(热力学) 过程(计算) 特质 关系(数据库) 机器学习 人工智能 数据挖掘 热力学 操作系统 物理 程序设计语言
作者
Evert Haasdijk,Jacqueline Heinerman
出处
期刊:Evolutionary Computation [The MIT Press]
卷期号:26 (2): 213-235 被引量:6
标识
DOI:10.1162/evco_a_00207
摘要

Selection is an essential component of any evolutionary system and analysing this fundamental force in evolution can provide relevant insights into the evolutionary development of a population. The 1990s and early 2000s saw a substantial number of publications that investigated selection pressure through methods such as takeover time and Markov chain analysis. Over the last decade, however, interest in the analysis of selection in evolutionary computing has waned. The established methods for analysis of selection pressure provide little insight when selection is based on more than comparison-of-fitness values. This can, for instance, be the case in coevolutionary systems, when measures unrelated to fitness affect the selection process (e.g., niching) or in systems that lack a crisply defined objective function. This article proposes two metrics that holistically consider the statistics of the evolutionary process to quantify selection pressure in evolutionary systems and so can be applied where traditionally used methods fall short. The metrics are based on a statistical analysis of the relation between reproductive success and a quantifiable trait: one method builds on an estimate of the probability that this relation is random; the other uses a correlation measure. These metrics provide convenient tools to analyse selection pressure and so allow researchers to better understand this crucial component of evolutionary systems. Both metrics are straightforward to implement and can be used in post-hoc analyses as well as during the evolutionary process, for example, to inform parameter control mechanisms. A number of case studies and a critical analysis show that the proposed metrics provide relevant and reliable measures of selection pressure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艳艳子发布了新的文献求助10
1秒前
chichenglin完成签到 ,获得积分10
17秒前
共享精神应助Kevin Li采纳,获得10
26秒前
chcmy完成签到 ,获得积分0
26秒前
蒲蒲完成签到 ,获得积分10
29秒前
Anna完成签到,获得积分10
30秒前
科研狗完成签到 ,获得积分10
50秒前
xiaozou55完成签到 ,获得积分10
52秒前
Dr.Tang完成签到 ,获得积分10
59秒前
姚芭蕉完成签到 ,获得积分0
1分钟前
momo完成签到 ,获得积分10
1分钟前
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
碧蓝雁风完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
艳艳子完成签到,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
现实的俊驰完成签到 ,获得积分10
2分钟前
海阔天空完成签到 ,获得积分10
2分钟前
nano完成签到 ,获得积分10
2分钟前
3分钟前
开挂完成签到,获得积分10
3分钟前
秋夜临完成签到,获得积分10
3分钟前
xiaofeixia完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
111完成签到 ,获得积分10
3分钟前
jzhumath完成签到,获得积分10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
4分钟前
zhu0101发布了新的文献求助10
4分钟前
zzgpku完成签到,获得积分0
4分钟前
Akim应助zhu0101采纳,获得10
4分钟前
zhu0101完成签到,获得积分10
4分钟前
GG完成签到 ,获得积分10
5分钟前
tianshanfeihe完成签到 ,获得积分10
5分钟前
阿明完成签到,获得积分10
5分钟前
领导范儿应助FEOROCHA采纳,获得30
5分钟前
文涵完成签到,获得积分20
5分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833879
求助须知:如何正确求助?哪些是违规求助? 3376319
关于积分的说明 10492616
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859