State-of-Health Estimation for LiFePO4 Battery System on Real-World Electric Vehicles Considering Aging Stage

健康状况 电池(电) 计算机科学 电动汽车 欧姆接触 汽车工程 工程类 功率(物理) 材料科学 纳米技术 量子力学 物理 图层(电子)
作者
Litao Zhou,Yang Zhao,Da Li,Zhenpo Wang
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:8 (2): 1724-1733 被引量:22
标识
DOI:10.1109/tte.2021.3129497
摘要

Comprehensive and accurate estimation methods of the state of health (SOH) of battery systems play a significant role in online monitoring for the safe and reliable operation of electric vehicles (EVs). Most existing estimation techniques are established on top of data from well-controlled experimental environments and tend to focus on a single health feature, thus not practical for real-world EVs’ SOH monitoring throughout the life cycle. To address this problem, based on real-world EV operation data, a novel SOH estimation model is presented for LiFePO 4 battery systems in EVs with consideration of degradation mechanisms. The ohmic resistance and the peak value of the incremental capacity (IC) curve are extracted from a large number of electric buses as health features. The influence of temperature on the ohmic resistance is eliminated by exponential fitting, which transforms ohmic resistance into the relative change rate of ohmic resistance. With joint considerations of the two health features and the mechanism of battery aging, three stages of SOH degradation can be quantitively described. The test results show that the proposed model is able to track SOH degradation from 0 to over 300 000 km and reflect the SOH of the battery more comprehensively in the early and late life cycles of the battery compared with single-health-feature methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Dragonfln完成签到,获得积分10
1秒前
爆米花应助哭泣的发卡采纳,获得10
1秒前
小薯条发布了新的文献求助10
1秒前
mmddlj发布了新的文献求助10
3秒前
3秒前
NanArtist应助自然的安波采纳,获得10
4秒前
似宁完成签到,获得积分20
5秒前
Ava应助宁好采纳,获得10
5秒前
搜集达人应助JJP采纳,获得10
5秒前
7秒前
Caojiaqi完成签到,获得积分10
7秒前
小王发布了新的文献求助10
7秒前
8秒前
Rangi完成签到,获得积分10
9秒前
10秒前
11秒前
wxyshare应助小薯条采纳,获得10
12秒前
Alice完成签到,获得积分10
12秒前
chizhi完成签到,获得积分10
12秒前
小九完成签到,获得积分10
13秒前
斯文的珊完成签到 ,获得积分10
13秒前
爆米花应助可爱鬼boom采纳,获得10
13秒前
yuxiuzhang发布了新的文献求助10
14秒前
小娄娄娄发布了新的文献求助10
14秒前
15秒前
各方面发布了新的文献求助10
15秒前
无理完成签到 ,获得积分10
15秒前
16秒前
17秒前
kk酱完成签到,获得积分10
17秒前
彩色的荔枝完成签到,获得积分10
18秒前
19秒前
19秒前
脑洞疼应助warmer采纳,获得10
19秒前
shusz完成签到,获得积分10
20秒前
pluto应助cc采纳,获得10
20秒前
华仔应助cc采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890