Structural and dielectric properties, and nonlinear electrical response of the CaCu Zn Ti O ceramics: Experimental and computational studies

材料科学 电介质 晶界 介电损耗 耗散因子 介电常数 陶瓷 相界 粒度 复合材料 兴奋剂 凝聚态物理 相(物质) 微观结构 光电子学 化学 物理 有机化学
作者
Jakkree Boonlakhorn,Narong Chanlek,Jedsada Manyam,Sriprajak Krongsuk,Prasit Thongbai,Pornjuk Srepusharawoot
出处
期刊:Ceramics International [Elsevier]
卷期号:47 (16): 22390-22396 被引量:18
标识
DOI:10.1016/j.ceramint.2021.04.248
摘要

CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鉨汏闫完成签到,获得积分10
刚刚
1秒前
迷路的手机完成签到 ,获得积分10
1秒前
飞龙在天完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
2秒前
标致缘郡完成签到,获得积分10
2秒前
kiker完成签到,获得积分10
3秒前
4秒前
wwdd完成签到,获得积分10
5秒前
6秒前
标致缘郡发布了新的文献求助10
6秒前
落落完成签到,获得积分10
6秒前
前途向阳完成签到 ,获得积分10
7秒前
深情的楷瑞完成签到 ,获得积分10
9秒前
桐桐应助流流采纳,获得10
10秒前
10秒前
Adrian完成签到,获得积分10
10秒前
10秒前
cc完成签到,获得积分10
10秒前
碧蓝的夏天完成签到,获得积分10
11秒前
简单的银耳汤完成签到,获得积分10
11秒前
Xu完成签到,获得积分10
11秒前
Persevere完成签到,获得积分10
11秒前
MM完成签到,获得积分10
12秒前
题西林壁完成签到,获得积分10
13秒前
13秒前
沈括完成签到,获得积分10
14秒前
14秒前
Sea_U发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
sennialiu完成签到,获得积分10
17秒前
orixero应助题西林壁采纳,获得10
17秒前
neuroscientist完成签到 ,获得积分10
17秒前
Ava应助受伤破茧采纳,获得10
18秒前
wuzhenwei完成签到,获得积分10
19秒前
大知闲闲完成签到,获得积分0
19秒前
刘肖完成签到,获得积分10
19秒前
123完成签到,获得积分10
21秒前
JamesPei应助dada采纳,获得10
22秒前
无聊的霸完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809769
求助须知:如何正确求助?哪些是违规求助? 5887148
关于积分的说明 15526040
捐赠科研通 4934181
什么是DOI,文献DOI怎么找? 2657093
邀请新用户注册赠送积分活动 1603329
关于科研通互助平台的介绍 1558697