Depression Analysis and Recognition Based on Functional Near-Infrared Spectroscopy

功能近红外光谱 萧条(经济学) 特征提取 特征(语言学) 计算机科学 人工智能 相关性 心理学 认知 模式识别(心理学) 精神科 前额叶皮质 数学 宏观经济学 经济 哲学 语言学 几何学
作者
Rui Wang,Yixue Hao,Yu Qiao,Min Chen,Iztok Humar,Giancarlo Fortino
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 4289-4299 被引量:52
标识
DOI:10.1109/jbhi.2021.3076762
摘要

Depression is the result of a complex interaction of social, psychological and physiological elements. Research into the brain disorders of patients suffering from depression can help doctors to understand the pathogenesis of depression and facilitate its diagnosis and treatment. Functional near-infrared spectroscopy (fNIRS) is a non-invasive approach to the detection of brain functions and activities. In this paper, a comprehensive fNIRS-based depression-processing architecture, including the layers of source, feature and model, is first established to guide the deep modeling for fNIRS. In view of the complexity of depression, we propose a methodology in the time and frequency domains for feature extraction and deep neural networks for depression recognition combined with current research. It is found that compared to non-depression people, patients with depression have a weaker encephalic area connectivity and lower level of activation in the prefrontal lobe during brain activity. Finally, based on raw data, manual features and channel correlations, the AlexNet model shows the best performance, especially in terms of the correlation features and presents an accuracy rate of 0.90 and a precision rate of 0.91, which is higher than ResNet18 and machine-learning algorithms on other data. Therefore, the correlation of brain regions can effectively recognize depression (from cases of non-depression), making it significant for the recognition of brain functions in the clinical diagnosis and treatment of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂完成签到,获得积分10
刚刚
刚刚
CHENXIN532发布了新的文献求助10
2秒前
2秒前
浮游应助MIUMIU采纳,获得10
3秒前
咚咚锵完成签到,获得积分10
3秒前
豪宝好饱完成签到 ,获得积分10
3秒前
嘟嘟许完成签到,获得积分10
3秒前
艾妮妮发布了新的文献求助10
4秒前
4秒前
one完成签到,获得积分10
6秒前
852应助耶耶采纳,获得10
6秒前
dddddd完成签到,获得积分10
8秒前
十公里完成签到,获得积分10
9秒前
9秒前
one发布了新的文献求助10
10秒前
10秒前
nut发布了新的文献求助10
10秒前
10秒前
12秒前
Jerry完成签到 ,获得积分10
12秒前
13秒前
领导范儿应助林雅采纳,获得30
14秒前
尔尔发布了新的文献求助30
14秒前
15秒前
聪慧豁发布了新的文献求助10
16秒前
JamesPei应助艾妮妮采纳,获得10
16秒前
思源应助WYH采纳,获得10
16秒前
16秒前
cj完成签到,获得积分20
17秒前
乐乐应助朗源Wu采纳,获得10
19秒前
红豆完成签到 ,获得积分10
19秒前
20秒前
yyc666发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
huizi发布了新的文献求助10
25秒前
可靠板栗发布了新的文献求助10
27秒前
黄sir发布了新的文献求助10
27秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548257
求助须知:如何正确求助?哪些是违规求助? 3979061
关于积分的说明 12320294
捐赠科研通 3647636
什么是DOI,文献DOI怎么找? 2008878
邀请新用户注册赠送积分活动 1044325
科研通“疑难数据库(出版商)”最低求助积分说明 932940