亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature

抗压强度 均方误差 硅粉 人工神经网络 Python(编程语言) 相关系数 算法 决定系数 梯度升压 随机森林 数学 Boosting(机器学习) 计算机科学 机器学习 统计 材料科学 复合材料 操作系统
作者
Ayaz Ahmad,Krzysztof Ostrowski,Mariusz Maślak,Furqan Farooq,Imran Mehmood,Afnan Nafees
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:14 (15): 4222-4222 被引量:149
标识
DOI:10.3390/ma14154222
摘要

High temperature severely affects the nature of the ingredients used to produce concrete, which in turn reduces the strength properties of the concrete. It is a difficult and time-consuming task to achieve the desired compressive strength of concrete. However, the application of supervised machine learning (ML) approaches makes it possible to initially predict the targeted result with high accuracy. This study presents the use of a decision tree (DT), an artificial neural network (ANN), bagging, and gradient boosting (GB) to forecast the compressive strength of concrete at high temperatures on the basis of 207 data points. Python coding in Anaconda navigator software was used to run the selected models. The software requires information regarding both the input variables and the output parameter. A total of nine input parameters (water, cement, coarse aggregate, fine aggregate, fly ash, superplasticizers, silica fume, nano silica, and temperature) were incorporated as the input, while one variable (compressive strength) was selected as the output. The performance of the employed ML algorithms was evaluated with regards to statistical indicators, including the coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Individual models using DT and ANN gave R2 equal to 0.83 and 0.82, respectively, while the use of the ensemble algorithm and gradient boosting gave R2 of 0.90 and 0.88, respectively. This indicates a strong correlation between the actual and predicted outcomes. The k-fold cross-validation, coefficient correlation (R2), and lesser errors (MAE, MSE, and RMSE) showed better performance than the ensemble algorithms. Sensitivity analyses were also conducted in order to check the contribution of each input variable. It has been shown that the use of the ensemble machine learning algorithm would enhance the performance level of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
科研通AI2S应助sgyhbxf25采纳,获得10
52秒前
52秒前
lmplzzp完成签到,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
啊哦额发布了新的文献求助10
2分钟前
仙女完成签到 ,获得积分10
2分钟前
FashionBoy应助啊哦额采纳,获得10
2分钟前
2分钟前
2分钟前
cyh发布了新的文献求助100
2分钟前
所所应助cyh采纳,获得10
2分钟前
个性紫完成签到 ,获得积分10
3分钟前
情怀应助Heaven采纳,获得10
3分钟前
3分钟前
承序完成签到,获得积分10
3分钟前
承序发布了新的文献求助10
3分钟前
3分钟前
啊哦额发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
加菲丰丰完成签到,获得积分0
4分钟前
4分钟前
fransiccarey完成签到,获得积分10
4分钟前
顾矜应助胖哥采纳,获得10
4分钟前
兜里没糖了完成签到 ,获得积分10
5分钟前
Yi完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
胖哥发布了新的文献求助10
5分钟前
5分钟前
肖恩发布了新的文献求助10
5分钟前
肖恩完成签到,获得积分10
5分钟前
Heaven完成签到,获得积分20
5分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060926
求助须知:如何正确求助?哪些是违规求助? 3599437
关于积分的说明 11432165
捐赠科研通 3323477
什么是DOI,文献DOI怎么找? 1827290
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699