A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing

药物重新定位 2019年冠状病毒病(COVID-19) 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 冠状病毒 大流行 药物发现 生物信息学 批准的药物 药理学 医学 药品 病毒学 药物开发 疾病 病毒 抗病毒药物 生物 传染病(医学专业) 病理 生态学
作者
Mahnaz Habibi,Golnaz Taheri,Rosa Aghdam
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:8
标识
DOI:10.1038/s41598-021-88427-w
摘要

Abstract The Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus needs a fast recognition of effective drugs to save lives. In the COVID-19 situation, finding targets for drug repurposing can be an effective way to present new fast treatments. We have designed a two-step solution to address this approach. In the first step, we identify essential proteins from virus targets or their associated modules in human cells as possible drug target candidates. For this purpose, we apply two different algorithms to detect some candidate sets of proteins with a minimum size that drive a significant disruption in the COVID-19 related biological networks. We evaluate the resulted candidate proteins sets with three groups of drugs namely Covid-Drug, Clinical-Drug, and All-Drug. The obtained candidate proteins sets approve 16 drugs out of 18 in the Covid-Drug, 273 drugs out of 328 in the Clinical-Drug, and a large number of drugs in the All-Drug. In the second step, we study COVID-19 associated proteins sets and recognize proteins that are essential to disease pathology. This analysis is performed using DAVID to show and compare essential proteins that are contributed between the COVID-19 comorbidities. Our results for shared proteins show significant enrichment for cardiovascular-related, hypertension, diabetes type 2, kidney-related and lung-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3210592完成签到 ,获得积分10
4秒前
Violet发布了新的文献求助10
5秒前
科研通AI5应助安静幻桃采纳,获得10
5秒前
JamesPei应助酷酷纹采纳,获得10
5秒前
道天发布了新的文献求助10
5秒前
月亮球发布了新的文献求助10
5秒前
学渣发布了新的文献求助10
5秒前
6秒前
彭凯完成签到,获得积分10
7秒前
不爱吃姜完成签到,获得积分10
8秒前
yueyue完成签到,获得积分10
8秒前
8秒前
开放谷芹完成签到,获得积分10
9秒前
小二郎应助lagou采纳,获得10
10秒前
10秒前
11秒前
薄雾轻飘发布了新的文献求助10
11秒前
12秒前
852应助黄鹤采纳,获得10
12秒前
活力笑天发布了新的文献求助10
13秒前
wxl完成签到 ,获得积分10
14秒前
彭凯发布了新的文献求助10
15秒前
磊磊猪完成签到,获得积分10
15秒前
小宋应助Violet采纳,获得10
15秒前
标致耷发布了新的文献求助10
15秒前
Nature完成签到,获得积分10
15秒前
shows发布了新的文献求助10
16秒前
16秒前
17秒前
九九完成签到,获得积分10
19秒前
wanci应助寂寞的菲鹰采纳,获得10
19秒前
无心风云应助薄雾轻飘采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Moisture state and volatile flavor behavior characterization of Naematelia aurantialba during postharvest in modified atmosphere packaging storage after treated with ultraviolet radiation C 400
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810928
求助须知:如何正确求助?哪些是违规求助? 3355371
关于积分的说明 10375682
捐赠科研通 3072163
什么是DOI,文献DOI怎么找? 1687237
邀请新用户注册赠送积分活动 811523
科研通“疑难数据库(出版商)”最低求助积分说明 766677