材料科学
极限抗拉强度
拉伸试验
断裂(地质)
蠕动
材料性能
断裂力学
结构工程
排名(信息检索)
法律工程学
计算机科学
可靠性工程
复合材料
工程类
人工智能
作者
J. Kazakeviciute,James Rouse,Davide S. A. De Focatiis,Christopher Hyde
标识
DOI:10.1177/03093247211025208
摘要
Small specimen mechanical testing is an exciting and rapidly developing field in which fundamental deformation behaviours can be observed from experiments performed on comparatively small amounts of material. These methods are particularly useful when there is limited source material to facilitate a sufficient number of standard specimen tests, if any at all. Such situations include the development of new materials or when performing routine maintenance/inspection studies of in-service components, requiring that material conditions are updated with service exposure. The potentially more challenging loading conditions and complex stress states experienced by small specimens, in comparison with standard specimen geometries, has led to a tendency for these methods to be used in ranking studies rather than for fundamental material parameter determination. Classifying a specimen as ‘small’ can be subjective, and in the present work the focus is to review testing methods that utilise specimens with characteristic dimensions of less than 50 mm. By doing this, observations made here will be relevant to industrial service monitoring problems, wherein small samples of material are extracted and tested from operational components in such a way that structural integrity is not compromised. Whilst recently the majority of small specimen test techniques development have focused on the determination of creep behaviour/properties as well as sub-size tensile testing, attention is given here to small specimen testing methods for determining specific tensile, fatigue, fracture and crack growth properties. These areas are currently underrepresented in published reviews. The suitability of specimens and methods is discussed here, along with associated advantages and disadvantages.
科研通智能强力驱动
Strongly Powered by AbleSci AI