正交晶系
氢化物
三元运算
镧系元素
结晶学
晶体结构
化学
中子衍射
氧化物
晶体化学
格子(音乐)
稀土
材料科学
离子
矿物学
物理
氢
有机化学
程序设计语言
计算机科学
声学
作者
Nicolas Zapp,Denis Sheptyakov,Holger Kohlmann
出处
期刊:Crystals
[Multidisciplinary Digital Publishing Institute]
日期:2021-06-26
卷期号:11 (7): 750-750
被引量:9
标识
DOI:10.3390/cryst11070750
摘要
Heteroanionic hydrides offer great possibilities in the design of functional materials. For ternary rare earth hydride oxide REHO, several modifications were reported with indications for a significant phase width with respect to H and O of the cubic representatives. We obtained DyHO and ErHO as well as the thus far elusive LuHO from solid-state reactions of RE2O3 and REH3 or LuH3 with CaO and investigated their crystal structures by neutron and X-ray powder diffraction. While DyHO, ErHO, and LuHO adopted the cubic anion-ordered half-Heusler LiAlSi structure type (F4¯3m, a(DyHO) = 5.30945(10) Å, a(ErHO) = 5.24615(7) Å, a(LuHO) = 5.171591(13) Å), LuHO additionally formed the orthorhombic anti-LiMgN structure type (Pnma; LuHO: a = 7.3493(7) Å, b = 3.6747(4) Å, c = 5.1985(3) Å; LuDO: a = 7.3116(16) Å, b = 3.6492(8) Å, c = 5.2021(7) Å). A comparison of the cubic compounds’ lattice parameters enabled a significant distinction between REHO and REH1+2xO1−x (x < 0 or x > 0). Furthermore, a computational chemistry study revealed the formation of REHO compounds of the smallest rare earth elements to be disfavored in comparison to the sesquioxides, which is why they may only be obtained by mild synthesis conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI