Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding–Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model

条件随机场 药物警戒 命名实体识别 计算机科学 人工智能 自然语言处理 药物反应 召回 药物不良反应 医学 机器学习 不利影响 药品 药理学 工程类 心理学 认知心理学 系统工程 任务(项目管理)
作者
Hong Wu,Jiatong Ji,Haimei Tian,Yao Chen,Weihong Ge,Haixia Zhang,Feng Yu,Jianjun Zou,Mitsuhiro Nakamura,Jun Liao
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:9 (12): e26407-e26407 被引量:24
标识
DOI:10.2196/26407
摘要

Background With the increasing variety of drugs, the incidence of adverse drug events (ADEs) is increasing year by year. Massive numbers of ADEs are recorded in electronic medical records and adverse drug reaction (ADR) reports, which are important sources of potential ADR information. Meanwhile, it is essential to make latent ADR information automatically available for better postmarketing drug safety reevaluation and pharmacovigilance. Objective This study describes how to identify ADR-related information from Chinese ADE reports. Methods Our study established an efficient automated tool, named BBC-Radical. BBC-Radical is a model that consists of 3 components: Bidirectional Encoder Representations from Transformers (BERT), bidirectional long short-term memory (bi-LSTM), and conditional random field (CRF). The model identifies ADR-related information from Chinese ADR reports. Token features and radical features of Chinese characters were used to represent the common meaning of a group of words. BERT and Bi-LSTM-CRF were novel models that combined these features to conduct named entity recognition (NER) tasks in the free-text section of 24,890 ADR reports from the Jiangsu Province Adverse Drug Reaction Monitoring Center from 2010 to 2016. Moreover, the man-machine comparison experiment on the ADE records from Drum Tower Hospital was designed to compare the NER performance between the BBC-Radical model and a manual method. Results The NER model achieved relatively high performance, with a precision of 96.4%, recall of 96.0%, and F1 score of 96.2%. This indicates that the performance of the BBC-Radical model (precision 87.2%, recall 85.7%, and F1 score 86.4%) is much better than that of the manual method (precision 86.1%, recall 73.8%, and F1 score 79.5%) in the recognition task of each kind of entity. Conclusions The proposed model was competitive in extracting ADR-related information from ADE reports, and the results suggest that the application of our method to extract ADR-related information is of great significance in improving the quality of ADR reports and postmarketing drug safety evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
微笑尔岚完成签到,获得积分10
3秒前
lixin发布了新的文献求助10
4秒前
vv发布了新的文献求助10
4秒前
想睡觉的小笼包完成签到 ,获得积分10
4秒前
6秒前
zyzy发布了新的文献求助10
6秒前
顺利含玉完成签到,获得积分10
8秒前
9秒前
情怀应助Dd采纳,获得10
9秒前
隐形曼青应助DanYang采纳,获得20
9秒前
9秒前
cc完成签到,获得积分10
9秒前
10秒前
小g完成签到,获得积分10
10秒前
Owen应助米白色梦想采纳,获得10
10秒前
12秒前
皮卡丘发布了新的文献求助20
12秒前
小猛人发布了新的文献求助10
12秒前
yeah发布了新的文献求助10
15秒前
saflgf关注了科研通微信公众号
16秒前
deigg发布了新的文献求助10
16秒前
vcjbbvb发布了新的文献求助10
16秒前
橘子完成签到,获得积分10
16秒前
山后别相逢完成签到 ,获得积分10
18秒前
zyzy完成签到,获得积分10
18秒前
18秒前
执着傲丝发布了新的文献求助10
19秒前
烟花应助syyyy采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
刘恒波完成签到,获得积分20
20秒前
爆米花应助落后的静曼采纳,获得10
21秒前
21秒前
21秒前
clone2012发布了新的文献求助10
22秒前
慕青应助轻松的雨旋采纳,获得10
22秒前
22秒前
酷波er应助YANYAN采纳,获得10
22秒前
123发布了新的文献求助10
23秒前
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Optics of Liquid Crystal Displays, 2nd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616479
求助须知:如何正确求助?哪些是违规求助? 4700931
关于积分的说明 14911255
捐赠科研通 4745036
什么是DOI,文献DOI怎么找? 2548828
邀请新用户注册赠送积分活动 1512125
关于科研通互助平台的介绍 1473947