New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (11): 943-953 被引量:44
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bin完成签到,获得积分10
刚刚
北过居庸完成签到,获得积分10
1秒前
xin完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
彬彬发布了新的文献求助10
5秒前
6秒前
zhuxl完成签到,获得积分10
6秒前
xl完成签到,获得积分10
6秒前
6秒前
萱萱发布了新的文献求助10
7秒前
留胡子的靖儿应助bin采纳,获得10
7秒前
lalala完成签到 ,获得积分10
7秒前
打打应助咸鱼采纳,获得10
7秒前
阿邱发布了新的文献求助10
8秒前
8秒前
All发布了新的文献求助10
8秒前
9秒前
yiyi完成签到,获得积分10
10秒前
孙皮皮发布了新的文献求助10
10秒前
聪明汉堡发布了新的文献求助10
10秒前
11完成签到,获得积分10
10秒前
hhllhh完成签到,获得积分10
10秒前
11秒前
LBJ发布了新的文献求助10
11秒前
可靠的老鼠完成签到,获得积分10
11秒前
11秒前
继往开来完成签到,获得积分10
12秒前
Yuchen完成签到,获得积分20
13秒前
陳陳完成签到,获得积分10
13秒前
彩色的奄发布了新的文献求助10
13秒前
13秒前
Cml完成签到,获得积分20
13秒前
钩子89发布了新的文献求助10
14秒前
可莉完成签到 ,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100732
求助须知:如何正确求助?哪些是违规求助? 3638476
关于积分的说明 11530053
捐赠科研通 3347317
什么是DOI,文献DOI怎么找? 1839630
邀请新用户注册赠送积分活动 906829
科研通“疑难数据库(出版商)”最低求助积分说明 824041