New trends in nonconventional carbon dot synthesis

纳米材料 纳米技术 溶剂热合成 碳纤维 水热合成 材料科学 纳米颗粒 机械化学 热液循环 化学工程 化学 工程类 无机化学 复合数 复合材料
作者
Beatrice Bartolomei,Jacopo Dosso,Maurizio Prato
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:3 (11): 943-953 被引量:44
标识
DOI:10.1016/j.trechm.2021.09.003
摘要

Alternative strategies different from the solvothermal one emerged for carbon dot (CD) synthesis. This represents a great opportunity to advance the level of control of CD properties. Mechanochemistry, flow chemistry, and laser synthesis in solution resulted in the formation of CDs using mild and greener conditions. These strategies offer control on different synthetic parameters compared with the batch synthesis. The classical trial-and-error approach limits the discovery and optimization of these nanomaterials. Machine learning has been presented as an effective tool to design and guide the synthesis of CDs with targeted properties. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. Carbon dots (CDs) are currently one of the hot topics in the nanomaterial world. Until recently, their preparation has been mostly based on solvothermal or hydrothermal syntheses requiring high temperatures, long reaction times, or toxic solvents. Moreover, the resulting materials are often affected by low reproducibility and difficult purification. A potential solution to these problems could be represented by innovative fields of chemistry, such as mechanochemistry, flow chemistry, and laser synthesis in the liquid phase. Machine learning could also be applied to go beyond the trial-and-error approach commonly used to explore the CD chemical space. In this review, we explore these recent approaches and their future potential to address some of the CD limitations, widening the range of properties and applications of these highly promising nanomaterials. the distance that the sonicator tip can longitudinally fluctuate. algorithms that learn a function from specific data by optimizing internal parameters of a general model. this approach relies on the combination of multiple nonlinear functions and the single nonlinear relationship is referred to as an artificial neuron. The resulting deep model is called a neural network. machine learning techniques that combine independent base models in order to produce one predictive model. the fluence of a laser pulse is the optical energy delivered per unit area. the ratio of the number of photons emitted to the number of photons absorbed. the irradiation of a liquid sample with ultrasonic waves, resulting in agitation and cavitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮访烟完成签到 ,获得积分10
刚刚
oceandad完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
啦啦啦完成签到,获得积分10
2秒前
3秒前
腼腆的栾完成签到,获得积分10
5秒前
cuigao完成签到 ,获得积分10
5秒前
5秒前
6秒前
今后应助guajiguaji采纳,获得10
6秒前
6秒前
称心涵柳发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
流白应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
年轻的馒头完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
科研助手6应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Ava应助小小铱采纳,获得10
10秒前
11秒前
皮皮雪发布了新的文献求助10
11秒前
11秒前
默默白开水完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509