运动(物理)
计算机科学
运动(音乐)
鉴定(生物学)
指纹(计算)
脊柱
人工智能
脊柱
运动捕捉
模式识别(心理学)
计算机视觉
医学
生物
解剖
声学
物理
外科
植物
作者
Carlo Dindorf,Jürgen Konradi,Claudia Wolf,Bertram Taetz,Gabriele Bleser,Janine Huthwelker,Friederike Werthmann,Philipp Drees,Michael Fröhlich,Ulrich Betz
标识
DOI:10.1080/10255842.2021.1981884
摘要
Surface topography systems enable the capture of spinal dynamic movement; however, it is unclear whether vertebral dynamics are unique enough to identify individuals. Therefore, in this study, we investigated whether the identification of individuals is possible based on dynamic spinal data. Three different data representations were compared (automated extracted features using contrastive loss and triplet loss functions, as well as simple descriptive statistics). High accuracies indicated the possible existence of a personal spinal 'fingerprint', therefore enabling subject recognition. The present work forms the basis for an objective comparison of subjects and the transfer of the method to clinical use cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI