Characterization of Volatile Component Changes in Peas under Different Treatments by GC-IMS and GC-MS

化学 己醛 壬醛 芳香 风味 气相色谱-质谱法 食品科学 色谱法 热气腾腾的 感官分析 质谱法
作者
Kangyi Zhang,Can Zhang,Haining Zhuang,Yue Liu,Tao Feng,Bin Nie
出处
期刊:Journal of Food Quality [Hindawi Publishing Corporation]
卷期号:2021: 1-13 被引量:11
标识
DOI:10.1155/2021/6533083
摘要

Volatile profiles of peas under 9 kinds of different treatments including native, washing, blanching, precooling, freezing, steaming, boiling, frying, and freeze-drying were characterized by GC-IMS and GC-MS. The differences of volatile compounds in different peas were observed from the characteristic fingerprints by GC-IMS. The Venn diagram found that the common flavor substances codetected by GC-IMS and GC-MS were n-hexanal, nonanal, 1-octene-3-ol, benzaldehyde, 6-methyl-5-hepten-2-one, trans-2-octenal, and 2-ethyl-3,5-dimethylpyrazine, which were speculated to be the key flavor substances of peas. The cluster analysis of the heat map conducted towards the differences of volatile components in peas under different treatments; the results indicated that peas could be mainly divided into four groups, which was consistent with the above conclusion of GC-IMS. Eight sensory descriptors were used to evaluate the aroma notes: sweet flowers, fat fragrance, waxy aldehydes, mushroom hay, roasted potato with nuts, vegetable-like bean, spicy dry tar, and bitter almond from the sensory analysis, and the sensory analysis also showed good agreement with the results of GC-IMS and GC-MS. The results indicated that the volatile compounds of peas under different treatments could be visualized and identified quickly via GC-IMS, and the samples could be clearly classified based on the difference of volatile compounds. Practical Application. In the study, fingerprints coupled with cluster analysis were a visualized method for the identification of volatile compounds. Meanwhile, a new method, the Venn diagram with OAV, was used to identify the key-aroma of products. Finally, a rapid method is established to classify products by GC-IMS. In future practical applications, GC-IMS can be used to classify products from different origins and different manufacturers. Similarly, it can identify fake and inferior products and whether the products have deteriorated. In addition, this research will provide a new strategy to find the relationship between flavor compounds and various processed technology towards different cereals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七个丸子应助化羽归尘采纳,获得10
刚刚
2秒前
2秒前
栎木枝完成签到 ,获得积分10
3秒前
尹尹尹发布了新的文献求助10
3秒前
4秒前
Aries完成签到 ,获得积分10
6秒前
小赵完成签到,获得积分10
6秒前
JrPaleo101应助畅快芝麻采纳,获得10
7秒前
Cindy发布了新的文献求助10
7秒前
温暖大米完成签到 ,获得积分10
8秒前
9秒前
9秒前
小杨完成签到 ,获得积分10
11秒前
yk完成签到 ,获得积分10
12秒前
做梦完成签到,获得积分10
13秒前
13秒前
小赵发布了新的文献求助10
13秒前
陆又柔完成签到,获得积分10
15秒前
0031发布了新的文献求助10
16秒前
Cindy完成签到,获得积分10
16秒前
NexusExplorer应助积极访冬采纳,获得10
17秒前
困困困困完成签到,获得积分10
19秒前
脑洞疼应助冷山采纳,获得20
19秒前
21秒前
21秒前
Unbelievable完成签到,获得积分10
21秒前
东方三问完成签到,获得积分10
24秒前
25秒前
25秒前
27秒前
maopf发布了新的文献求助10
27秒前
chestnut灬完成签到 ,获得积分10
28秒前
29秒前
隐形曼青应助旧辞采纳,获得10
29秒前
一啊鸭完成签到,获得积分10
30秒前
小许发布了新的文献求助30
30秒前
做梦发布了新的文献求助20
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462