Boundary Enhancement Semantic Segmentation for Building Extraction From Remote Sensed Image

计算机科学 分割 卷积神经网络 人工智能 图像分割 编码器 模式识别(心理学) GSM演进的增强数据速率 遥感 边界(拓扑) 多样性(控制论) 计算机视觉 深度学习 数学 数学分析 地质学 操作系统
作者
Hoin Jung,Han-Soo Choi,Myungjoo Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:117
标识
DOI:10.1109/tgrs.2021.3108781
摘要

Image processing via convolutional neural network (CNN) has been developed rapidly for remote sensing technology. Moreover, techniques for accurately extracting building footprints from remote sensed images have attracted considerable interest owing to their wide variety of common applications, including monitoring natural disasters and urban development. Extraction of building footprints can be performed easily by semantic segmentation using U-Net-like CNN architectures. However, obtaining precise boundaries of segmentation masks remains challenging due to various impediments surrounding target objects. In this study, we propose a method to elaborate edges of buildings detected in remote sensed images to enhance the boundaries of segmentation masks. The proposed method adopts holistically nested edge detection (HED) , which extracts edge features at an encoder of a given architecture. In the proposed boundary enhancement (BE) module , an extracted edge and segmentation mask are combined, sharing mutual information. To enable the proposed method efficiently to adapt to a wide variety of conditions, we design a distinctive approach adopting a HED unit and BE module, which is applicable to various semantic segmentation networks containing encoder-decoder structures. Experiments were conducted on five different datasets (DeepGlobe, Urban3D, WHU [high-resolution (HR), low-resolution (LR)], and Massachusetts). The results demonstrate that our proposed approaches improved on the performance of prior methods for extracting building footprints. Comparative experiments were conducted on various backbone architectures including U-Net, ResUNet++, TernausNet, and U-shape spatial pyramid pooling (USPP) to ensure the effectiveness of the proposed method. Based on various evaluation metrics and qualitative analysis, our results show that the proposed method achieved improved performance compared with prior methods for all datasets and backbone networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
18秒前
桥西小河完成签到 ,获得积分10
19秒前
25秒前
ccccccccc123发布了新的文献求助10
30秒前
123完成签到 ,获得积分10
37秒前
DJ_Tokyo完成签到,获得积分0
51秒前
Leo完成签到 ,获得积分10
53秒前
朴素的山蝶完成签到 ,获得积分10
58秒前
58秒前
ccccccccc123完成签到,获得积分10
1分钟前
笨笨青筠完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
天天快乐应助dingtao采纳,获得10
1分钟前
1分钟前
阳炎完成签到,获得积分10
1分钟前
荣幸完成签到 ,获得积分10
1分钟前
dingtao发布了新的文献求助10
1分钟前
科研怪人完成签到 ,获得积分10
1分钟前
1分钟前
MS903完成签到,获得积分10
1分钟前
森山完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
流星雨完成签到 ,获得积分10
2分钟前
边疆完成签到,获得积分20
2分钟前
Whenryuan完成签到 ,获得积分10
2分钟前
英勇雅琴完成签到 ,获得积分10
2分钟前
2分钟前
找文献的天才狗完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
未雨完成签到 ,获得积分10
2分钟前
骆十八完成签到,获得积分10
2分钟前
2分钟前
舒服的月饼完成签到 ,获得积分10
2分钟前
王半书完成签到 ,获得积分10
2分钟前
小脸红扑扑完成签到 ,获得积分10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685655
关于积分的说明 14838778
捐赠科研通 4673409
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013