Deep learning‐based motion tracking using ultrasound images

人工智能 计算机科学 计算机视觉 基本事实 帧(网络) 跟踪(教育) 分割 帧速率 深度学习 模式识别(心理学) 心理学 教育学 电信
作者
Xianjin Dai,Yang Lei,Justin Roper,Yue Chen,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7747-7756 被引量:10
标识
DOI:10.1002/mp.15321
摘要

Abstract Purpose Ultrasound (US) imaging is an established imaging modality capable of offering video‐rate volumetric images without ionizing radiation. It has the potential for intra‐fraction motion tracking in radiation therapy. In this study, a deep learning‐based method has been developed to tackle the challenges in motion tracking using US imaging. Methods We present a Markov‐like network, which is implemented via generative adversarial networks, to extract features from sequential US frames (one tracked frame followed by untracked frames) and thereby estimate a set of deformation vector fields (DVFs) through the registration of the tracked frame and the untracked frames. The positions of the landmarks in the untracked frames are finally determined by shifting landmarks in the tracked frame according to the estimated DVFs. The performance of the proposed method was evaluated on the testing dataset by calculating the tracking error (TE) between the predicted and ground truth landmarks on each frame. Results The proposed method was evaluated using the MICCAI CLUST 2015 dataset which was collected using seven US scanners with eight types of transducers and the Cardiac Acquisitions for Multi‐structure Ultrasound Segmentation (CAMUS) dataset which was acquired using GE Vivid E95 ultrasound scanners. The CLUST dataset contains 63 2D and 22 3D US image sequences respectively from 42 and 18 subjects, and the CAMUS dataset includes 2D US images from 450 patients. On CLUST dataset, our proposed method achieved a mean tracking error of 0.70 ± 0.38 mm for the 2D sequences and 1.71 ± 0.84 mm for the 3D sequences for those public available annotations. And on CAMUS dataset, a mean tracking error of 0.54 ± 1.24 mm for the landmarks in the left atrium was achieved. Conclusions A novel motion tracking algorithm using US images based on modern deep learning techniques has been demonstrated in this study. The proposed method can offer millimeter‐level tumor motion prediction in real time, which has the potential to be adopted into routine tumor motion management in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuna完成签到,获得积分10
1秒前
2秒前
科研通AI5应助段晓坤采纳,获得10
3秒前
李家新29完成签到,获得积分10
3秒前
方以松完成签到,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
6秒前
小二郎应助LYL采纳,获得10
8秒前
9秒前
qiao应助磊枝采纳,获得10
11秒前
Qiao发布了新的文献求助30
11秒前
月下丶陈一完成签到 ,获得积分10
13秒前
牛蛙丶丶完成签到,获得积分10
14秒前
lucky发布了新的文献求助10
14秒前
科研通AI5应助初余采纳,获得10
15秒前
樊书南完成签到,获得积分20
15秒前
笨笨芯应助虚拟的惜筠采纳,获得10
16秒前
Mollymama完成签到 ,获得积分10
16秒前
上官若男应助樊书南采纳,获得10
20秒前
啥也不会完成签到 ,获得积分10
21秒前
21秒前
21秒前
22秒前
kkkk完成签到,获得积分10
23秒前
悠然发布了新的文献求助10
24秒前
钟D摆完成签到 ,获得积分10
24秒前
科研通AI5应助天天向上采纳,获得10
24秒前
25秒前
盛夏发布了新的文献求助20
26秒前
天真酒窝完成签到,获得积分10
26秒前
张宗文发布了新的文献求助10
26秒前
啥也不会关注了科研通微信公众号
27秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757