Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression

谷氨酸的 神经科学 代谢型谷氨酸受体 谷氨酸受体 单胺类 抗抑郁药 神经传递 突触可塑性 重性抑郁障碍 NMDA受体 生物 医学 药理学 受体 血清素 内科学 海马体 认知
作者
Yating Wang,Xiaole Wang,Sitong Feng,Nai‐Hong Chen,Zhen‐Zhen Wang,Yi Zhang
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:171: 105761-105761 被引量:58
标识
DOI:10.1016/j.phrs.2021.105761
摘要

Major depressive disorder (MDD) is severely prevalent, and conventional monoaminergic antidepressants gradually exhibit low therapeutic efficiency, especially for patients with treatment-resistant depression. A neuroplasticity hypothesis is an emerging advancement in the mechanism of depression, mainly expressed in the glutamate system, e.g., glutamate receptors and signaling. Dysfunctional glutamatergic neurotransmission is currently considered to be closely associated with the pathophysiology of MDD. Biological function, pharmacological action, and signal attributes in the glutamate system both regulate the neural process. Specific functional subunits could be therapeutic targets to explore the novel glutamatergic modulators, which have fast-acting, and relatively sustained antidepressant effects. Here, the present review summarizes the pathophysiology of MDD found in the glutamate system, exploring the role of glutamate receptors and their downstream effects. These convergent mechanisms have prompted the development of other modulators targeting on glutamate system, including N-methyl-d-aspartate receptor antagonists, selective GluN2B-specific antagonists, glycine binding site agents, and regulators of metabotropic glutamate receptors. Relevant researches underly the putative mechanisms of these drugs, which reverse the damage of depression by regulating glutamatergic neurotransmission. It also provides further insight into the mechanism of depression and exploring potential targets for novel agent development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助多情向日葵采纳,获得10
1秒前
2秒前
7秒前
peakmon完成签到 ,获得积分10
7秒前
刘智山完成签到 ,获得积分10
7秒前
8秒前
李爱国应助hzhang0807采纳,获得10
9秒前
9秒前
9秒前
多情向日葵完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
加绒完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助100
14秒前
darren发布了新的文献求助10
15秒前
15秒前
15秒前
Chief完成签到,获得积分0
15秒前
Yan发布了新的文献求助10
16秒前
光亮念文完成签到,获得积分10
16秒前
Owen应助jjdeng采纳,获得10
18秒前
18秒前
19秒前
19秒前
hzhang0807发布了新的文献求助10
20秒前
23秒前
23秒前
25秒前
25秒前
26秒前
27秒前
Karry关注了科研通微信公众号
27秒前
28秒前
红豆完成签到 ,获得积分10
29秒前
hohokuz发布了新的文献求助10
29秒前
29秒前
jjdeng发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241256
求助须知:如何正确求助?哪些是违规求助? 3774887
关于积分的说明 11854495
捐赠科研通 3429828
什么是DOI,文献DOI怎么找? 1882599
邀请新用户注册赠送积分活动 934467
科研通“疑难数据库(出版商)”最低求助积分说明 841016