DQ-GAT: Towards Safe and Efficient Autonomous Driving With Deep Q-Learning and Graph Attention Networks

可扩展性 计算机科学 人工智能 强化学习 深度学习 机器学习 忠诚 一般化 图形 弹道 理论计算机科学 数据库 电信 数学 物理 数学分析 天文
作者
Peide Cai,Hengli Wang,Yuxiang Sun,Ming Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21102-21112 被引量:4
标识
DOI:10.1109/tits.2022.3184990
摘要

Autonomous driving in multi-agent dynamic traffic scenarios is challenging: the behaviors of road users are uncertain and are hard to model explicitly, and the ego-vehicle should apply complicated negotiation skills with them, such as yielding, merging and taking turns, to achieve both safe and efficient driving in various settings. Traditional planning methods are largely rule-based and scale poorly in these complex dynamic scenarios, often leading to reactive or even overly conservative behaviors. Therefore, they require tedious human efforts to maintain workability. Recently, deep learning-based methods have shown promising results with better generalization capability but less hand engineering efforts. However, they are either implemented with supervised imitation learning (IL), which suffers from dataset bias and distribution mismatch issues, or are trained with deep reinforcement learning (DRL) but focus on one specific traffic scenario. In this work, we propose DQ-GAT to achieve scalable and proactive autonomous driving, where graph attention-based networks are used to implicitly model interactions, and deep Q-learning is employed to train the network end-to-end in an unsupervised manner. Extensive experiments in a high-fidelity driving simulator show that our method achieves higher success rates than previous learning-based methods and a traditional rule-based method, and better trades off safety and efficiency in both seen and unseen scenarios. Moreover, qualitative results on a trajectory dataset indicate that our learned policy can be transferred to the real world for practical applications with real-time speeds. Demonstration videos are available at https://caipeide.github.io/dq-gat/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没烦恼完成签到,获得积分10
3秒前
烟花应助Mzhao采纳,获得10
3秒前
4秒前
科研通AI5应助Nereus采纳,获得10
4秒前
科研通AI5应助qianyuan采纳,获得10
5秒前
秘密完成签到,获得积分10
5秒前
5秒前
yiding完成签到 ,获得积分10
6秒前
7秒前
7秒前
kingripple发布了新的文献求助10
9秒前
淡淡的筝发布了新的文献求助10
10秒前
wocala完成签到 ,获得积分10
10秒前
11秒前
CCC完成签到,获得积分10
11秒前
11秒前
cxy发布了新的文献求助10
12秒前
啊啊完成签到,获得积分20
13秒前
14秒前
15秒前
wang0626完成签到 ,获得积分10
15秒前
GB发布了新的文献求助10
16秒前
000发布了新的文献求助10
16秒前
16秒前
16秒前
LaTeXer给怡然凌柏的求助进行了留言
18秒前
牙牙发布了新的文献求助10
18秒前
顺利的觅云完成签到,获得积分10
18秒前
小二郎应助333水采纳,获得10
18秒前
qianyuan发布了新的文献求助10
20秒前
可爱的函函应助科研兄采纳,获得10
20秒前
20秒前
RAY完成签到,获得积分10
21秒前
聪明白羊完成签到,获得积分10
21秒前
Orange应助尊敬的凝丹采纳,获得10
22秒前
小马甲应助无限妙梦采纳,获得10
22秒前
S1008发布了新的文献求助10
23秒前
标致冰海完成签到 ,获得积分10
24秒前
啊啊发布了新的文献求助20
25秒前
无私乐驹发布了新的文献求助10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214