结构方程建模
心理信息
样本量测定
统计能力
统计
先验与后验
计量经济学
统计假设检验
航程(航空)
数学
样品(材料)
计算机科学
统计模型
心理学
工程类
梅德林
哲学
化学
认识论
色谱法
政治学
法学
航空航天工程
作者
Lisa J. Jobst,Martina Bader,Morten Moshagen
出处
期刊:Psychological Methods
[American Psychological Association]
日期:2021-10-21
卷期号:28 (1): 207-221
被引量:120
摘要
Structural equation modeling (SEM) is a widespread approach to test substantive hypotheses in psychology and other social sciences. However, most studies involving structural equation models neither report statistical power analysis as a criterion for sample size planning nor evaluate the achieved power of the performed tests. In this tutorial, we provide a step-by-step illustration of how a priori, post hoc, and compromise power analyses can be conducted for a range of different SEM applications. Using illustrative examples and the R package semPower, we demonstrate power analyses for hypotheses regarding overall model fit, global model comparisons, particular individual model parameters, and differences in multigroup contexts (such as in tests of measurement invariance). We encourage researchers to yield reliable-and thus more replicable-results based on thoughtful sample size planning, especially if small or medium-sized effects are expected. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
科研通智能强力驱动
Strongly Powered by AbleSci AI